[1] V. V. Podinovskij, V. D. Nogin: Pareto Optimal Solutions in Multiobjective Problems. Nauka, Moscow 1982 (in Russian).
[2] T. Tanino:
Saddle points and duality in multi-objective programming. Internal. J. System Sci. 13 (1982), 3, 323-335.
MR 0703062 |
Zbl 0487.49021
[3] J. W. Nieuwenhuis:
Supremal points and generalized duality. Math. Operationsforsch. Statist. Ser. Optim. 11 (1980), 1, 41-59.
MR 0608904 |
Zbl 0514.90073
[4] T. Tanino, Y Sawaragi:
Duality theory in multiobjective programming. J. Optim. Theory Appl. 27 (1979), 4, 509-529.
MR 0533118 |
Zbl 0378.90100
[5] T. Tanino, Y. Sawaragi:
Conjugate maps and duality in multiobjective programming. J. Optim. Theory Appl. 31 (1980), 4, 473-499.
MR 0600200
[6] S. Brumelle:
Duality for multiobjective convex programming. Math. Opуr. Res. 6 (1981), 2, 159-172.
MR 0616342
[7] Tran Quoc Chien:
Duality and optimally conditions in abstract concave maximization. Kybernetika 21 (1985), 2, 108-117.
MR 0797324
[8] Tran Quoc Chien:
Duality in vector optimization. Part I: Abstract duality scheme. Kybernetika 20 (1984), 4, 304-313.
MR 0768510
[9] Tran Quoc Chien:
Duality in vector optimization. Part 2: Vector quasiconcave programming. Kybernetika 20 (1984), 5, 386-404.
MR 0776328
[10] Tran Quoc Chien:
Duality in vector optimization. Part 3: Partially quasiconcave programming and vector fractional programming. Kybernetika 20 (1984), 6, 458-472.
MR 0777980
[11] I. Ekeland, R. Teman:
Convex Analysis and Variational Problems. North-Holland, American Elsevier, Amsterdam, New York 1976.
MR 0463994
[12] R. Holmes: Geometrical Functional Analysis and its Applications. Springor-Verlag, Berlin 1975.
[13] E. G. Golstein:
Duality Theory in Mathematical Programming and its Applications. Nauka. Moscow 1971 (in Russian).
MR 0322531
[14] C. Zalinescu:
A generalization of the Farkas lemma and applications to convex programming. J. Math. Anal. Applic. 66 (1978), 3, 651-678.
MR 0517753 |
Zbl 0396.90070
[15] B. M. Glover:
A generalized Farkas lemma with applications to quasidifferentiable programming. Oper. Res. 26 (1982), 7, 125-141.
MR 0686601 |
Zbl 0494.90088
[16] B. D. Craven:
Vector-Valued Optimization. Generalized Concavity in Optimization and Economics. New York 1981, pp. 661 - 687.
Zbl 0534.90080
[17] B. Marios: Nonlinear Programming: Theory and Methods. Akad0miai Kiado, Budapest 1975.
[19] S. Schaible:
A Survey of Fractional Programming. Generalized Concavity in Optimization and Economics. New York 1981, pp. 417-440.
Zbl 0535.90092
[20] S. Schaible:
Duality in fractional programming: a unified approach. Oper. Res. 24 (1976), 3, 452-461.
MR 0411644 |
Zbl 0348.90120
[22] S. Schaible:
Analyse und Anwendungen von Quotientenprogrammen. Hein-Verlag, Meisenhein 1978.
MR 0533590 |
Zbl 0395.90045
[23] B. D. Craven: Duality for Generalized Convex Fractional Programs. Generalized Concavity in Optimization and Economics. New York 1984, pp. 473 - 489.
[24] U. Passy:
Pseudoduality in mathematical programs with quotients and ratios. J. Optim. Theory Appl. 33 (1981), 325-348.
MR 0619629
[25] J. Flachs, M. Pollatschek:
Equivalence between a generalized Fenchel duality theorem and a saddle-point theorem for fractional programs. J. Optim. Theory Appl. 37 (1981), I, 23-32.
MR 0663511