Previous |  Up |  Next

Article

References:
[1] V. V. Podinovskij, V. D. Nogin: Pareto Optimal Solutions in Multiobjective Problems. Nauka, Moscow 1982 (in Russian).
[2] T. Tanino: Saddle points and duality in multi-objective programming. Internal. J. System Sci. 13 (1982), 3, 323-335. MR 0703062 | Zbl 0487.49021
[3] J. W. Nieuwenhuis: Supremal points and generalized duality. Math. Operationsforsch. Statist. Ser. Optim. 11 (1980), 1, 41-59. MR 0608904 | Zbl 0514.90073
[4] T. Tanino, Y Sawaragi: Duality theory in multiobjective programming. J. Optim. Theory Appl. 27 (1979), 4, 509-529. MR 0533118 | Zbl 0378.90100
[5] T. Tanino, Y. Sawaragi: Conjugate maps and duality in multiobjective programming. J. Optim. Theory Appl. 31 (1980), 4, 473-499. MR 0600200
[6] S. Brumelle: Duality for multiobjective convex programming. Math. Opуr. Res. 6 (1981), 2, 159-172. MR 0616342
[7] Tran Quoc Chien: Duality and optimally conditions in abstract concave maximization. Kybernetika 21 (1985), 2, 108-117. MR 0797324
[8] Tran Quoc Chien: Duality in vector optimization. Part I: Abstract duality scheme. Kybernetika 20 (1984), 4, 304-313. MR 0768510
[9] Tran Quoc Chien: Duality in vector optimization. Part 2: Vector quasiconcave programming. Kybernetika 20 (1984), 5, 386-404. MR 0776328
[10] Tran Quoc Chien: Duality in vector optimization. Part 3: Partially quasiconcave programming and vector fractional programming. Kybernetika 20 (1984), 6, 458-472. MR 0777980
[11] I. Ekeland, R. Teman: Convex Analysis and Variational Problems. North-Holland, American Elsevier, Amsterdam, New York 1976. MR 0463994
[12] R. Holmes: Geometrical Functional Analysis and its Applications. Springor-Verlag, Berlin 1975.
[13] E. G. Golstein: Duality Theory in Mathematical Programming and its Applications. Nauka. Moscow 1971 (in Russian). MR 0322531
[14] C. Zalinescu: A generalization of the Farkas lemma and applications to convex programming. J. Math. Anal. Applic. 66 (1978), 3, 651-678. MR 0517753 | Zbl 0396.90070
[15] B. M. Glover: A generalized Farkas lemma with applications to quasidifferentiable programming. Oper. Res. 26 (1982), 7, 125-141. MR 0686601 | Zbl 0494.90088
[16] B. D. Craven: Vector-Valued Optimization. Generalized Concavity in Optimization and Economics. New York 1981, pp. 661 - 687. Zbl 0534.90080
[17] B. Marios: Nonlinear Programming: Theory and Methods. Akad0miai Kiado, Budapest 1975.
[18] S. Schaible: Fractional programming. Z. Oper. Res. 27 (1983), 39-54. MR 0706418 | Zbl 0529.90088
[19] S. Schaible: A Survey of Fractional Programming. Generalized Concavity in Optimization and Economics. New York 1981, pp. 417-440. Zbl 0535.90092
[20] S. Schaible: Duality in fractional programming: a unified approach. Oper. Res. 24 (1976), 3, 452-461. MR 0411644 | Zbl 0348.90120
[21] S. Schaible: Fractional programming I; duality. Manag. Sci. 22 (1976), 8, 858-867. MR 0421679 | Zbl 0338.90050
[22] S. Schaible: Analyse und Anwendungen von Quotientenprogrammen. Hein-Verlag, Meisenhein 1978. MR 0533590 | Zbl 0395.90045
[23] B. D. Craven: Duality for Generalized Convex Fractional Programs. Generalized Concavity in Optimization and Economics. New York 1984, pp. 473 - 489.
[24] U. Passy: Pseudoduality in mathematical programs with quotients and ratios. J. Optim. Theory Appl. 33 (1981), 325-348. MR 0619629
[25] J. Flachs, M. Pollatschek: Equivalence between a generalized Fenchel duality theorem and a saddle-point theorem for fractional programs. J. Optim. Theory Appl. 37 (1981), I, 23-32. MR 0663511
Partner of
EuDML logo