Article
Keywords:
matching; factors; Hamiltonian cycles; powers of graphs; connected graph
Summary:
The following result is proved: Let $G$ be a connected graph of order $geq 4$. Then for every matching $M$ in $G^4$ there exists a hamiltonian cycle $C$ of $G^4$ such that $E(C)\bigcap M=0$.
References:
[1] M. Behzad G. Chartrand, and L. Lesniak-Foster:
Graphs & Digraphs. Prindle, Weber L Schmidt, Boston, 1979.
MR 0525578
[3] L. Nebeský:
On the existence of a 3-factor in the fourth power of graph. Časopis pěst. mat. 105 (1980), 204-207.
MR 0573113
[4] L. Nebeský:
On a 1-factor of the fourth power of a connected graph. Časopis pěst. mat. 113 (1988), 415-420.
MR 0981882
[5] M. Sekanina:
On an ordering of the set of vertices of a connected graph. Publ. Sci. Univ. Brno 412 (1960), 137-142.
MR 0140095 |
Zbl 0118.18903
[7] E. Wisztová:
A hamiltonian cycle and a 1-factor on the fourth power of a graph. Časopis pěst. mat. 110 (1985), 403-412.
MR 0820332
[8] E. Wisztová:
On a hamiltonian cycle of the fourth power of a connected graph. Mathematica Bohemica 116 (1991), 385-390.
MR 1146396