Article
Keywords:
generalized linear differential equation; substitution method; variational stability; logarithmic prolongation; ordinary linear differential equation with a substitution
Summary:
The generalized linear differential equation $dx=d[a(t)]x+df$ where $A,f\in BV^{loc}_n(J)$ and the matrices $I-\Delta^-\ A(t), I+\Delta^+\ A(t)$ are regular, can be transformed $\frac{dy}{ds}=B(s)y+g(s)$ using the notion of a logarithimc prolongation along an increasing function. This method enables to derive various results about generalized LDE from the well-known properties of ordinary LDE. As an example, the variational stability of the generalized LDE is investigated.
References:
                        
[F] Fraňková D.: A discontinuous substitution in the generalized Perron integral. (to appear in Mathematica Bohemica).
[FS] Fraňková D., Schwabik Š.: 
Generalized Sturm-Liouville equations II. Czechoslovak Math. J. 38 (113) 1988, 531-553. 
MR 0950307 
[K] Kurzweil J.: 
Ordinary differential equations. Studies in Applied Mechanics 13. Elsevier Amsterdam-Oxford-New York-Tokyo 1986. 
MR 0929466 | 
Zbl 0667.34002 
[S1] Schwabik Š.: 
Generalized differential equations. Fundamental results. Rozpravy ČSAV, Academia Praha 1985. 
MR 0823224 | 
Zbl 0594.34002 
[S2] Schwabik Š.: 
Variational stability for generalized ordinary differential equations. Časopis pěst. mat. 109 (1984), Praha, 389-420. 
MR 0774281 | 
Zbl 0574.34034 
[STV] Schwabik Š., Tvrdý M., Vejvoda O.: 
Differential and integral equations. Boundary Value Problems and Adjoints. Academia Praha, Reidel Dordrecht, 1979. 
MR 0542283