Previous |  Up |  Next

Article

Keywords:
supermagic graphs; complete multipartite graphs; products of graphs
Summary:
A graph is called supermagic if it admits a labelling of the edges by pairwise different consecutive positive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. Some constructions of supermagic labellings of regular graphs are described. Supermagic regular complete multipartite graphs and supermagic cubes are characterized.
References:
[1] M. Bača I. Holländer, Ko-Wei Lih: Two classes of super-magic graphs. J. Combin. Math. Combin. Comput. 23 (1997), 113-120. MR 1432751
[2] T. Bier D. G. Rogers: Balanced magic rectangles. Europ. J. Combin. 14 (1993), 285-299. DOI 10.1006/eujc.1993.1032 | MR 1226576
[3] M. Doob: Characterizations of regular magic graphs. J. Combin. Theory, Ser. B 25 (1978), 94-104. DOI 10.1016/S0095-8956(78)80013-6 | MR 0505855 | Zbl 0384.05054
[4] R. B. Jeurissen: Magic graphs, a characterization. Europ. J. Combin. 9 (1988), 363-368. DOI 10.1016/S0195-6698(88)80066-0 | MR 0950055 | Zbl 0657.05065
[5] S. Jezný M. Trenkler: Characterization of magic graphs. Czechoslovak Math. J. 33 (1983), 435-438. MR 0718926
[6] J. Sedláček: Problem 27. Theory of Graphs and Its Applications, Proc. Symp. Smolenice. Praha, 1963, pp. 163-164.
[7] J. Sedláček: On magic graphs. Math. Slovaca 26 (1976), 329-335. MR 0434889
[8] B. M. Stewart: Magic graphs. Canad. J. Math. 18 (1966), 1031-1059. DOI 10.4153/CJM-1966-104-7 | MR 0197358 | Zbl 0149.21401
[9] B. M. Stewart: Supermagic complete graphs. Canad. J. Math. 19 (1967), 427-438. DOI 10.4153/CJM-1967-035-9 | MR 0209180 | Zbl 0162.27801
Partner of
EuDML logo