Previous |  Up |  Next

Article

Keywords:
Rings of sets; completion of sequential convergence rings; $Z(2)$-generation; $Z(2)$-completion; $\sigma $-rings of maps; epireflection; fields of events; foundation of probability
Summary:
The ring $B(R)$ of all real-valued measurable functions, carrying the pointwise convergence, is a sequential ring completion of the subring $C(R)$ of all continuous functions and, similarly, the ring $\mathbb{B}$ of all Borel measurable subsets of $R$ is a sequential ring completion of the subring $\mathbb{B}_0$ of all finite unions of half-open intervals; the two completions are not categorical. We study $\mathcal L_0^*$-rings of maps and develop a completion theory covering the two examples. In particular, the $\sigma $-fields of sets form an epireflective subcategory of the category of fields of sets and, for each field of sets $\mathbb{A}$, the generated $\sigma $-field $\sigma (\mathbb{A})$ yields its epireflection. Via zero-rings the theory can be applied to completions of special commutative $\mathcal L_0^*$-groups.
References:
[BKF] Borsík, J. and Frič, R.: Pointwise convergence fails to be strict. Czechoslovak Math. J. 48(123) (1998), 313–320. DOI 10.1023/A:1022841621251 | MR 1624327
[FCA] Frič, R.: On continuous characters of Borel sets. In Proceedings of the Conference on Convergence Spaces (Univ. Nevada, Reno, Nev., 1976), Dept. Math. Univ. Nevada, Reno, Nev., 1976, pp. 35–44. MR 0437673
[FCB] Frič, R.: On completions of rationals. In Recent Developments of General Topology and its Applications, Math. Research No. 67, Akademie-Verlag, Berlin, 1992, pp. 124–129. MR 1219772
[FKO] Frič, R. and Koutník, V.: Completions for subcategories of convergence rings. In Categorical Topology and its Relations to Modern Analysis, Algebra and Combinatorics, World Scientific Publishing Co., Singapore, 1989, pp. 195–207. MR 1047901
[FKT] Frič, R. and Koutník, V.: Sequential convergence spaces: iteration, extension, completion, enlargement. In Recent Progress in General Topology, North Holland, Amsterdam, 1992, pp. 199–213. MR 1229126
[FMR] Frič, R., McKennon, K. and Richardson, G. D.: Sequential convergence in $C(X)$. In Convergence Structures and Application to Analysis (Frankfurt/Oder, 1978), Abh. Akad. Wiss. DDR, Abt. Math.-Naturwiss.-Technik, 1979, Nr. 4N, Akademie-Verlag, Berlin, 1980, pp. 57–65. MR 0614001
[FPA] Frič, R. and Piatka, Ľ.: Continuous homomorphisms in set algebras. Práce Štud. Vys. Šk. Doprav. Žiline Sér. Mat.-fyz., 2 (1979), 13–20. (Slovak) MR 0675939
[FZE] Frič, R. and Zanolin, F.: Coarse sequential convergence in groups, etc. Czechoslovak Math. J. 40 (115) (1990), 459–467. MR 1065025
[FZS] Frič, R. and Zanolin, F.: Strict completions of $L _0^*$-groups. Czechoslovak Math. J. 42 (117) (1992), 589–598. MR 1182190
[HES] Herrlich, H. and Strecker, G. E.: Category Theory. 2nd edition, Heldermann Verlag, Berlin, 1976. MR 2377903
[ITH] Isbell, J. R. and Thomas Jr., S.: Mazur’s theorem on sequentially continuous functionals. Proc. Amer. Math. Soc. 14 (1963), 644–647. MR 0151833
[LAC] Laczkovich, M.: Baire 1 functions. Real Analysis Exchange 9 (1983/84), 15–28. DOI 10.2307/44153506
[NOE] Novák, J.: Über die eindeutigen stetigen Erweiterungen stetiger Funktionen. Czechoslovak Math. J. 8 (1958), 344–355. MR 0100826
[NOV] Novák, J.: On completions of convergence commutative groups. In General Topology and its Relations to Modern Analysis and Algebra III (Proc. Third Prague Topological Sympos., 1971), Academia, Praha, 1972, pp. 335–340. MR 0365451
[PAU] Paulík, L.: Strictness of $L_0$-ring completions. Tatra Mountains Math. Publ. 5 (1995), 169–175. MR 1384806
Partner of
EuDML logo