Article
Keywords:
ordinary differential equations; linear differential equations; transformations; functional equations
Summary:
The paper describes the general form of an ordinary differential equation of the order $n+1$ $(n\ge 1)$ which allows a nontrivial global transformation consisting of the change of the independent variable. A result given by J. Aczél is generalized. A functional equation of the form \[ f\biggl (s, v, w_{11}v_{1}, \ldots , \sum _{j=1}^{n}w_{nj}v_{j}\biggr ) = \sum _{j=1}^{n}w_{n+1 j}v_{j} + w_{n+1 n+1}f(x, v, v_{1}, \ldots , v_{n}), \] where $ w_{ij} = a_{ij}(x_{1}, \ldots , x_{i-j+1}) $ are given functions, $ w_{n+1 1} = g(x, x_{1}, \ldots , x_{n})$, is solved on  $\mathbb R.$
References:
                        
[n1] J. Aczél: 
Lectures on Functional Equations and Their Applications. Academic Press, New York, 1966. 
MR 0208210[n2] J. Aczél: 
Über Zusammenhänge zwischen Differential- und Funktionalgleichungen. Jahresber. Deutsch. Math.-Verein. 71 (1969), 55–57. 
MR 0256014[n3] O. Borůvka: 
Linear Differential Transformations of the Second Order. The English Univ. Press, London, 1971. 
MR 0463539[n4] A. Moór, L. Pintér: 
Untersuchungen Über den Zusammenhang von Differential- und Funktionalgleichungen. Publ. Math. Debrecen 13 (1966), 207–223. 
MR 0206445[n5] F. Neuman: 
Global Properties of Linear Ordinary Differential Equations. Mathematics and Its Applications (East European Series) 52, Kluwer Acad. Publ., Dordrecht-Boston-London, 1991. 
MR 1192133 | 
Zbl 0784.34009[n7] V. Tryhuk: 
Remark to transformations of linear differential and functional-differential equations. Czechoslovak Math. J. 50 (125) (2000), 265–278. 
DOI 10.1023/A:1022414717364 | 
MR 1761386