[3] T. Fofanova, I. Rival, A. Rutkowski: 
Dimension two, fixed points nad dismantable ordered sets. Order 13 (1996), 245–253. 
MR 1420398 
[4] F. Hausdorff: Grundzüge der Mengenlehre. Leipzig, 1914.
[5] T. Hiraguchi: 
On the dimension of partially ordered sets. Sci. Rep. Kanazawa Univ. 1 (1951), 77–94. 
MR 0070681 | 
Zbl 0200.00013 
[6] H. A. Kierstead, E. C. Milner: 
The dimension of the finite subsets of $K$. Order 13 (1996), 227–231. 
MR 1420396 
[7] D. Kurepa: 
Partitive sets and ordered chains. Rad Jugosl. Akad. Znan. Umjet. Odjel Mat. Fiz. Tehn. Nauke 6 (302) (1957), 197–235. 
MR 0097328 | 
Zbl 0147.26301 
[9] E. Mendelson: Appendix. W. Sierpiński: Cardinal and Ordinal Numbers, Warszawa, 1958.
[11] V. Novák: 
On the well dimension of ordered sets. Czechoslovak Math. J. 19 (94) (1969), 1–16. 
MR 0241325 
[12] V. Novák: 
Über Erweiterungen geordneter Mengen. Arch. Math. (Brno) 9 (1973), 141–146. 
MR 0354456 
[14] M. Novotný: O representaci částečně uspořádaných množin posloupnostmi nul a jedniček (On representation of partially ordered sets by means of sequences of 0’s and 1’s). Čas. pěst. mat. 78 (1953), 61–64.
[15] M. Novotný: 
Bemerkung über die Darstellung teilweise geordneter Mengen. Spisy přír. fak. MU Brno 369 (1955), 451–458. 
MR 0082958 
[16] 
Ordered sets. Proc. NATO Adv. Study Inst. Banff (1981). 
Zbl 0519.05017 
[18] A. Rutkowski: 
Which countable ordered sets have a dense linear extension?. Math. Slovaca 46 (1996), 445–455. 
MR 1451035 | 
Zbl 0890.06003 
[20] J. Schmidt: 
Zur Kennzeichnung der Dedekind-Mac Neilleschen Hülle einer geordneten Menge. Arch. Math. 7 (1956), 241–249. 
DOI 10.1007/BF01900297 | 
MR 0084484 
[21] V. Sedmak: 
Dimenzija djelomično uredenih skupova pridruženih poligonima i poliedrima (Dimension of partially ordered sets connected with polygons and polyhedra). Period. Math.-Phys. Astron. 7 (1952), 169–182. 
MR 0053495 
[22] W. Sierpiński: 
Cardinal and Ordinal Numbers. Warszawa, 1958. 
MR 0095787 
[24] G. Szász: 
Einführung in die Verbandstheorie. Leipzig, 1962. 
MR 0138567