[1] J. Berndt, F. Tricerri and L. Vanhecke:
Generalized Heisenberg groups and Damek-Ricci harmonic spaces. Lecture Notes in Math. 1598, Springer-Verlag, Berlin, Heidelberg, New York, 1995.
MR 1340192
[2] A. L. Besse:
Manifolds all of whose geodesics are closed. Ergeb. Math. Grenzgeb. 93, Springer-Verlag, Berlin, Heidelberg, New York, 1978.
MR 0496885 |
Zbl 0387.53010
[3] A. L. Besse:
Einstein manifolds. Ergeb. Math. Grenzgeb. 3. Folge 10, Springer-Verlag, Berlin, Heidelberg, New York, 1987.
MR 0867684 |
Zbl 0613.53001
[4] D. E. Blair:
Contact manifolds in Riemannian geometry. Lecture Notes in Math. 509, Springer-Verlag, Berlin, Heidelberg, New York, 1976.
MR 0467588 |
Zbl 0319.53026
[5] D. E. Blair:
When is the tangent sphere bundle locally symmetric? Geometry and Topology. World Scientific, Singapore, 1989, pp. 15–30.
MR 1001586
[7] E. Boeckx, O. Kowalski and L. Vanhecke:
Riemannian manifolds of conullity two. World Scientific, Singapore, 1996.
MR 1462887
[8] E. Boeckx and L. Vanhecke:
Characteristic reflections on unit tangent sphere bundles. Houston J. Math. 23 (1997), 427–448.
MR 1690045
[9] E. Boeckx and L. Vanhecke:
Curvature homogeneous unit tangent sphere bundles. Publ. Math. Debrecen 53 (1998), 389–413.
MR 1657491
[10] P. Bueken:
Three-dimensional Riemannian manifolds with constant principal Ricci curvatures $\rho _1=\rho _2\ne \rho _3$. J. Math. Phys. 37 (1996), 4062–4075.
MR 1400834
[11] B.-Y. Chen and L. Vanhecke:
Differential geometry of geodesic spheres. J. Reine Angew. Math. 325 (1981), 28–67.
MR 0618545
[12] P. Gilkey, A. Swann and L. Vanhecke:
Isoparametric geodesic spheres and a conjecture of Osserman concerning the Jacobi operator. Quart. J. Math. Oxford 46 (1995), 299–320.
DOI 10.1093/qmath/46.3.299 |
MR 1348819
[14] A. Gray and L. Vanhecke:
Riemannian geometry as determined by the volumes of small geodesic balls. Acta Math. 142 (1979), 157–198.
DOI 10.1007/BF02395060 |
MR 0521460
[16] S. Ivanov and I. Petrova:
Riemannian manifolds in which certain curvature operator has constant eigenvalues along each circle. Ann. Global Anal. Geom. 15 (1997), 157–171.
DOI 10.1023/A:1006548328030 |
MR 1448723
[17] O. Kowalski:
A note to a theorem by K. Sekigawa. Comment. Math. Univ. Carolin. 30 (1989), 85–88.
MR 0995705 |
Zbl 0679.53043
[18] O. Kowalski:
A classification of Riemannian 3-manifolds with constant principal Ricci curvatures $\rho _1=\rho _2\ne \rho _3$. Nagoya Math. J. 132 (1993), 1–36.
DOI 10.1017/S002776300000461X |
MR 1253692
[19] O. Kowalski:
An explicit classification of 3-dimensional Riemannian spaces satisfying $R(X,Y)\cdot R=0$. Czechoslovak Math. J. 46 (1996), 427–474.
MR 1408298 |
Zbl 0879.53014
[22] K. Sekigawa and L. Vanhecke:
Volume preserving geodesic symmetries on four-dimensional Kähler manifolds. Differential Geometry Peñiscola, 1985, Proceedings, A. M. Naveira, A. Ferrández and F. Mascaró (eds.), Lecture Notes in Math. 1209, Springer, pp. 275–290.
MR 0863763
[24] I. M. Singer and J. A. Thorpe:
The curvature of 4-dimensional Einstein spaces. Global Analysis. Papers in honor of K. Kodaira, Princeton University Press, Princeton, 1969, pp. 355–365.
MR 0256303
[25] Z. I. Szabó:
Structure theorems on Riemannian manifolds satisfying $R(X,Y)\cdot R=0$, I, Local version. J. Differential Geom. 17 (1982), 531–582.
MR 0683165
[28] A. L. Yampol’skii:
The curvature of the Sasaki metric of tangent sphere bundles (Russian). Ukrain. Geom. Sb. 28 (1985), 132–145.
MR 0801377