Previous |  Up |  Next

Article

Title: Uniform exponential ergodicity of stochastic dissipative systems (English)
Author: Goldys, Beniamin
Author: Maslowski, Bohdan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 51
Issue: 4
Year: 2001
Pages: 745-762
Summary lang: English
.
Category: math
.
Summary: We study ergodic properties of stochastic dissipative systems with additive noise. We show that the system is uniformly exponentially ergodic provided the growth of nonlinearity at infinity is faster than linear. The abstract result is applied to the stochastic reaction diffusion equation in $\mathbb{R}^d$ with $d\le 3$. (English)
Keyword: dissipative system
Keyword: compact semigroup
Keyword: exponential ergodicity
Keyword: spectral gap
MSC: 37A30
MSC: 47A35
MSC: 60H10
MSC: 60H15
MSC: 60J99
idZBL: Zbl 1001.60067
idMR: MR1864040
.
Date available: 2009-09-24T10:46:58Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127684
.
Reference: [1] S. Aida: Uniform positivity improving property, Sobolev inequalities and spectral gaps.J. Funct. Anal. 158 (1998), 152–185. Zbl 0914.47041, MR 1641566
Reference: [2] R. Arima: On general boundary value problem for parabolic equations.J.  Math. Kyoto Univ. 4 (1964), 207–243. Zbl 0143.13902, MR 0197997, 10.1215/kjm/1250524714
Reference: [3] Mu-Fa Chen: Equivalence of exponential ergodicity and $L^2$-exponential convergence for Markov chains.Stochastic Process. Appl. 87 (2000), 281–297. MR 1757116
Reference: [4] A. Chojnowska-Michalik and B. Goldys: Existence, uniqueness and invariant measures for stochastic semilinear equations in Hilbert spaces.Probab. Theory Related Fields 102 (1995), 331–356. MR 1339737, 10.1007/BF01192465
Reference: [5] A. Chojnowska-Michalik and B. Goldys: Nonsymmetric Ornstein-Uhlenbeck semigroup as second quantized operator.J.  Math. Kyoto Univ. 36 (1996), 481–498. MR 1417822, 10.1215/kjm/1250518505
Reference: [6] G. Da Prato: Large asymptotic behaviour of Kolmogorov equations in Hilbert spaces.Partial Differential Equations (Praha, 1998), Chapman & Hall/CRC, Boca Raton, 2000, pp. 111–120. Zbl 0946.47027, MR 1713879
Reference: [7] G. Da Prato: Poincaré inequality for some measures in Hilbert spaces and application to spectral gap for transition semigroups.Ann. Scuola Norm. Sup. Pisa Cl. Sci. $(4)$ 25 (1997), 419–431. Zbl 1039.60053, MR 1655525
Reference: [8] G. Da Prato and J. Zabczyk: Stochastic Equations in Infinite Dimensions.Cambridge University Press, Cambridge, 1992. MR 1207136
Reference: [9] G. Da Prato and J. Zabczyk: Ergodicity for Infinite Dimensional Systems.Cambridge University Press, Cambridge, 1996. MR 1417491
Reference: [10] G. Da Prato, A. Debussche and B. Goldys: Invariant measures of non symmetric dissipative stochastic systems.(to appear).
Reference: [11] G. Da Prato, D. Gątarek and J. Zabczyk: Invariant measures for semilinear stochastic equations.Stochastic Anal. Appl. 10 (1992), 387–408. MR 1178482, 10.1080/07362999208809278
Reference: [12] D. Gątarek and B. Goldys: On invariant measures for diffusions on Banach spaces.Potential Anal. 7 (1997), 539–553. MR 1467205
Reference: [13] B. Goldys and B. Maslowski: Ergodic control of semilinear stochastic equations and the Hamilton-Jacobi equation.J. Math. Anal. Appl. 234 (1999), 592–631. MR 1689410, 10.1006/jmaa.1999.6387
Reference: [14] N. Jain and B. Jamison: Contributions to Doeblin’s theory of Markov processes.Z. Wahrscheinlichkeitstheorie und Verw. Geb. 8 (1967), 19–40. MR 0221591
Reference: [15] S. Jacquot and G. Royer: Ergodicité d’une classe d’équations aux dérivées partielles stochastiques.C. R.  Acad. Sci. Paris Sér. I Math. 320 (1995), 231–236. MR 1320362
Reference: [16] A. Lasota and M. C. Mackey: Chaos, Fractals and Noise.Springer-Verlag, New York, 1994. MR 1244104
Reference: [17] B. Maslowski: Strong Feller property for semilinear stochastic evolution equations and applications.Stochastic Systems and Optimization (Warsaw, 1988). Lecture Notes in Control Inform. Sci. Vol. 136, Springer, Berlin, 1989, pp. 210–224. Zbl 0686.60053, MR 1180781
Reference: [18] B. Maslowski: On ergodic behaviour of solutions to systems of stochastic reaction-diffusion equations with correlated noise.Stochastic Processes and Related Topics (Georgenthal, 1990), Akademie-Verlag, Berlin, 1991, pp. 93–102. Zbl 0719.60059, MR 1127885
Reference: [19] B. Maslowski: On probability distributions of solutions of semilinear stochastic evolution equations.Stochastics Stochastics Rep. 45 (1993), 17–44. Zbl 0792.60058, MR 1277360, 10.1080/17442509308833854
Reference: [20] B. Maslowski and J. Seidler: Probabilistic approach to the strong Feller property.Probab. Theory Related Fields 118 (2000), 187–210. MR 1790081, 10.1007/s440-000-8014-0
Reference: [21] B. Maslowski and J. Seidler: Invariant measures for nonlinear SPDE’s: Uniqueness and stability.Arch. Math. (Brno) 34 (1998), 153–172. MR 1629692
Reference: [22] S. P. Meyn and R. L. Tweedie: Markov Chains and Stochastic Stability.Springer-Verlag, London, 1993. MR 1287609
Reference: [23] S. Peszat and J. Seidler: Maximal inequalities and space-time regularity of stochastic convolutions.Math. Bohem. 123 (1998), 7–32. MR 1618707
Reference: [24] G. O. Roberts and J. S. Rosenthal: Geometric ergodicity and hybrid Markov chains.Electron. Comm. Probab. 2 (1997), 13–25. MR 1448322, 10.1214/ECP.v2-981
Reference: [25] M. Röckner and T. S. Zhang: Probabilistic representations and hyperbound estimates for semigroups.Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 (1999), 337–358. MR 1810996
Reference: [26] J. Seidler: Ergodic behaviour of stochastic parabolic equations.Czechoslovak Math. J. 47 (122) (1997), 277–316. Zbl 0935.60041, MR 1452421, 10.1023/A:1022821729545
Reference: [27] T. Shardlow: Geometric ergodicity for stochastic PDEs.Stochastic Anal.Appl. 17 (1999), 857–869. Zbl 0933.60074, MR 1714903, 10.1080/07362999908809639
Reference: [28] E. Sinestrari: Accretive differential operators.Boll. Un. Mat. Ital  B. (5) 13 (1976), 19–31. Zbl 0343.35016, MR 0425682
Reference: [29] Wang Feng-Yu: Functional inequalities, semigroup properties and spectrum estimate.Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000), 263–295. MR 1812701
Reference: [30] Wu Liming: Uniformly integrable operators and large deviations for Markov processes.J. Funct. Anal. 172 (2000), 301–376. Zbl 0957.60032, MR 1753178
.

Files

Files Size Format View
CzechMathJ_51-2001-4_7.pdf 428.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo