Article
Keywords:
simple Lie algebra; Verma module; multiplicity
Summary:
We reduce the problem on multiplicities of simple subquotients in an $\alpha $-stratified generalized Verma module to the analogous problem for classical Verma modules.
References:
                        
[2] L. Casian and D. Collingwood: 
The Kazhdan-Lusztig conjecture for generalized Verma modules. Math. Z. 195 (1987), 581–600. 
DOI 10.1007/BF01166705 | 
MR 0900346[3] A. J. Coleman and V. M. Futorny: 
Stratified L-modules. J. Algebra 163 (1994), 219–234. 
MR 1257315[5] V. Futorny and V. Mazorchuk: 
Structure of $\alpha $-stratified modules for finite-dimensional Lie algebras. J. Algebra I, 183 (1996), 456–482. 
DOI 10.1006/jabr.1996.0229 | 
MR 1399036[8] V. S. Mazorchuk: 
The structure of an $\alpha $-stratified generalized Verma module over Lie Algebra $\mathop {\mathrm sl}(n,{\mathbb{C}})$. Manuscripta Math. 88 (1995), 59–72. 
DOI 10.1007/BF02567805 | 
MR 1348790[9] A. Rocha-Caridi: 
Splitting criteria for $G$-modules induced from a parabolic and a Bernstein-Gelfand-Gelfand resolution of a finite-dimensional, irreducible $G$-module. Trans. Amer. Math. Soc. 262 (1980), 335–366. 
MR 0586721