Previous |  Up |  Next

Article

Keywords:
semilocal; group ring
Summary:
Let $R$ be an associative ring with identity and let $J(R)$ denote the Jacobson radical of $R$. $R$ is said to be semilocal if $R/J(R)$ is Artinian. In this paper we give necessary and sufficient conditions for the group ring $RG$, where $G$ is an abelian group, to be semilocal.
References:
[1] M. Auslander: On regular group rings. Proc. Amer. Math. Soc. 8 (1957), 658–664. DOI 10.1090/S0002-9939-1957-0087670-X | MR 0087670 | Zbl 0079.26703
[2] I. G. Connell: On the group ring. Canad. J.  Math. 15 (1963), 650–685. DOI 10.4153/CJM-1963-067-0 | MR 0153705 | Zbl 0121.03502
[3] J. M.  Goursaud: Sur les anneaux de groupes semi-parfaits. Canad. J.  Math. 25 (1973), 922–928. DOI 10.4153/CJM-1973-098-1 | MR 0338054 | Zbl 0269.16012
[4] K.  Gulliksen, P.  Ribenboim and T. M.  Viswanathan: An elementary note on group rings. J.  Reine Angew. Math. 242 (1970), 148–162. MR 0274609
[5] J. Lambek: Lectures on Rings and Modules. Blaisdell, Waltham, Mass., 1966. MR 0206032 | Zbl 0143.26403
[6] J.  Lawrence: Semilocal group rings and tensor products. Michigan Math.  J. 22 (1975), 309–313. MR 0393107
[7] D. S.  Passman: Advances in group rings. Israel J.  Math. 19 (1974), 67–107. DOI 10.1007/BF02756627 | MR 0357477
[8] G.  Renault: Sur les anneaux de groupes. C.  R.  Acad. Sci. Paris Ser.  A 273 (1971), 84–87. MR 0288189 | Zbl 0275.16013
[9] S. M. Woods: Some results on semi-perfect group rings. Canad. J.  Math. 28 (1974), 121–129. MR 0330212 | Zbl 0242.16007
Partner of
EuDML logo