Article
Keywords:
semilocal; group ring
Summary:
Let $R$ be an associative ring with identity and let $J(R)$ denote the Jacobson radical of $R$. $R$ is said to be semilocal if $R/J(R)$ is Artinian. In this paper we give necessary and sufficient conditions for the group ring $RG$, where $G$ is an abelian group, to be semilocal.
References:
[4] K. Gulliksen, P. Ribenboim and T. M. Viswanathan:
An elementary note on group rings. J. Reine Angew. Math. 242 (1970), 148–162.
MR 0274609
[6] J. Lawrence:
Semilocal group rings and tensor products. Michigan Math. J. 22 (1975), 309–313.
MR 0393107
[8] G. Renault:
Sur les anneaux de groupes. C. R. Acad. Sci. Paris Ser. A 273 (1971), 84–87.
MR 0288189 |
Zbl 0275.16013
[9] S. M. Woods:
Some results on semi-perfect group rings. Canad. J. Math. 28 (1974), 121–129.
MR 0330212 |
Zbl 0242.16007