[3] R. Goldblatt: 
TOPOI, The Categorical Analysis of Logic. North-Holland Publ. Co., Amsterdam-New York-Oxford, 1979. 
MR 0551362 
[4] D. Higgs: A Category Approach to Boolean-Valued Set Theory. Manuscript, University of Waterloo, 1973.
[5] U. Höhle: 
Presheaves over GL-monoids. In: Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-New York, 1995, pp. 127–157. 
MR 1345643 
[6] U. Höhle: 
M-Valued sets and sheaves over integral, commutative cl-monoids. Applications of Category Theory to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-Boston, 1992, pp. 34–72. 
MR 1154568 
[7] U. Höhle: 
Classification of subsheaves over GL-algebras. Proceedings of Logic Colloquium  98, Prague, Springer Verlag, 1999. 
MR 1743263 
[8] U. Höhle: 
Commutative, residuated l-monoids. Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-New York, 1995, pp. 53–106. 
MR 1345641 
[11] 
Toposes, Algebraic Geometry and Logic. F. W. Lawvere (ed.), Springer-Verlag, Berlin-Heidelberg-New York, 1971. 
MR 0330254 
[12] M. Makkai and E. G. Reyes: 
Firts Order Categorical Logic. Springer-Verlag, Berlin-New York-Heidelberg, 1977. 
MR 0505486 
[16] A. Pultr: Closed Categories of L-fuzzy Sets. Vortrage zur Automaten und Algorithmentheorie, TU Dresden, 1976.
[18] O. Wyler: 
Fuzzy logic and categories of fuzzy sets. Non-Classical Logic and Their Applications to Fuzzy Subsets, Kluwer Academic Publ., Dordrecht-New York, 1995, pp. 235–268. 
MR 1345646 | 
Zbl 0827.03039