Article
Keywords:
s-Perron integral; sap-Perron integral; ap-McShane integral
Summary:
In this paper, we study the s-Perron, sap-Perron and ap-McShane integrals. In particular, we show that the s-Perron integral is equivalent to the McShane integral and that the sap-Perron integral is equivalent to the ap-McShane integral.
References:
                        
[2] T. S.  Chew, and K.  Liao: 
The descriptive definitions and properties of the AP-integral and their application to the problem of controlled convergence. Real Analysis Exchange 19 (1993-1994), 81–97. 
DOI 10.2307/44153816 | 
MR 1268833[3] R. A.  Gordon: 
Some comments on the McShane and Henstock integrals. Real Analysis Exchange 23 (1997–1998), 329–342. 
DOI 10.2307/44152859 | 
MR 1609917[4] R. A.  Gordon: 
The Integrals of Lebesgue, Denjoy, Perron, and Henstock. Amer. Math. Soc., Providence, 1994. 
MR 1288751 | 
Zbl 0807.26004[5] J.  Kurzweil: 
On multiplication of Perron integrable functions. Czechoslovak Math.  J. 23(98) (1973), 542–566. 
MR 0335705 | 
Zbl 0269.26007[6] J.  Kurzweil, and J.  Jarník: 
Perron type integration on $n$-dimensional intervals as an extension of integration of step functions by strong equiconvergence. Czechoslovak Math. J. 46(121) (1996), 1–20. 
MR 1371683[7] T. Y.  Lee: 
On a generalized dominated convergence theorem for the AP integral. Real Analysis Exchange 20 (1994–1995), 77–88. 
MR 1313672[8] K.  Liao: 
On the descriptive definition of the Burkill approximately continuous integral. Real Analysis Exchange 18 (1992–1993), 253–260. 
DOI 10.2307/44133066 | 
MR 1205520[9] Y. J.  Lin: 
On the equivalence of four convergence theorems for the AP-integral. Real Analysis Exchange 19 (1993–1994), 155–164. 
DOI 10.2307/44153824 | 
MR 1268841