Previous |  Up |  Next

Article

Title: Approximation by $p$-Faber-Laurent rational functions in the weighted Lebesgue spaces (English)
Author: Israfilov, Daniyal M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 3
Year: 2004
Pages: 751-765
Summary lang: English
.
Category: math
.
Summary: Let $L\subset C$ be a regular Jordan curve. In this work, the approximation properties of the $p$-Faber-Laurent rational series expansions in the $\omega $ weighted Lebesgue spaces $L^p(L,\omega )$ are studied. Under some restrictive conditions upon the weight functions the degree of this approximation by a $k$th integral modulus of continuity in $L^p(L,\omega )$ spaces is estimated. (English)
Keyword: Faber polynomial
Keyword: Faber series
Keyword: weighted Lebesgue space
Keyword: weighted Smirnov space
Keyword: $k$-th modulus of continuity
MSC: 30E10
MSC: 41A10
MSC: 41A25
MSC: 41A30
MSC: 41A58
idZBL: Zbl 1080.41500
idMR: MR2086731
.
Date available: 2009-09-24T11:17:13Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127926
.
Reference: [1] S. Y. Alper: Approximation in the mean of analytic functions of class $E^p$.In: Investigations on the Modern Problems of the Function Theory of a Complex Variable, Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1960, pp. 272–286. (Russian) MR 0116101
Reference: [2] J. E.  Andersson: On the degree of polynomial approximation in $E^p(D)$.J.  Approx. Theory 19 (1977), 61–68. MR 0614155, 10.1016/0021-9045(77)90029-6
Reference: [3] A. Çavuş and D. M.  Israfilov: Approximation by Faber-Laurent rational functions in the mean of functions of the class $L_{p}(\Gamma ) $ with $1<p<\infty $.Approximation Theory App. 11 (1995), 105–118. MR 1341424
Reference: [4] G.  David: Operateurs integraux singulers sur certaines courbes du plan complexe.Ann. Sci. Ecol. Norm. Super. 4 (1984), 157–189. MR 0744071, 10.24033/asens.1469
Reference: [5] P. L. Duren: Theory of $H^p$-Spaces.Academic Press, , 1970. MR 0268655
Reference: [6] E. M. Dyn’kin and B. P.  Osilenker: Weighted estimates for singular integrals and their applications.In: Mathematical analysis, Vol. 21, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1983, pp. 42–129. (Russian) MR 0736522
Reference: [7] D.  Gaier: Lectures on Complex Approximation.Birkhäuser-Verlag, Boston-Stuttgart, 1987. Zbl 0612.30003, MR 0894920
Reference: [8] G. M.  Golusin: Geometric Theory of Functions of a Complex Variable.Translation of Mathematical Monographs, Vol. 26, AMS, 1969. MR 0247039
Reference: [9] E. A.  Haciyeva: Investigation of the properties of functions with quasimonotone Fourier coefficients in generalized Nikolsky-Besov spaces. Author’s summary of candidates dissertation.(1986), Tbilisi. (Russian)
Reference: [10] I. I.  Ibragimov and D. I.  Mamedhanov: A constructive characterization of a certain class of functions.Dokl. Akad. Nauk SSSR 223 (1975), 35–37. MR 0470218
Reference: [11] D. M.  Israfilov: Approximate properties of the generalized Faber series in an integral metric.Izv. Akad. Nauk Az. SSR, Ser. Fiz.-Tekh. Math. Nauk 2 (1987), 10–14. (Russian) Zbl 0655.30023, MR 0946314
Reference: [12] D. M. Israfilov: Approximation by $p$-Faber polynomials in the weighted Smirnov class  $E^p(G,\omega )$ and the Bieberbach polynomials.Constr. Approx. 17 (2001), 335–351. MR 1828916, 10.1007/s003650010030
Reference: [13] V. M.  Kokilashvili: A direct theorem on mean approximation of analytic functions by polynomials.Soviet Math. Dokl. 10 (1969), 411–414. Zbl 0212.09901
Reference: [14] A. I. Markushevich: Theory of Analytic Functions, Vol.  2.Izdatelstvo Nauka, Moscow, 1968.
Reference: [15] B.  Muckenhoupt: Weighted norm inequalites for Hardy maximal functions.Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 0293384, 10.1090/S0002-9947-1972-0293384-6
Reference: [16] P. K.  Suetin: Series of Faber Polynomials.Nauka, Moscow, 1984; Cordon and Breach Publishers, 1998. Zbl 0936.30026, MR 0774773
Reference: [17] J. L.  Walsh and H. G. Russel: Integrated continuity conditions and degree of approximation by polynomials or by bounded analytic functions.Trans. Amer. Math. Soc. 92 (1959), 355–370. MR 0108595, 10.1090/S0002-9947-1959-0108595-3
Reference: [18] M.  Wehrens: Best approximation on the unit sphere in  $R^n$.Funct. Anal. and Approx. Proc. Conf. Oberwolfach. Aug. 9-16, 1980, Basel, 1981, pp. 233–245. Zbl 0529.41024, MR 0650278
.

Files

Files Size Format View
CzechMathJ_54-2004-3_17.pdf 365.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo