Previous |  Up |  Next

Article

Keywords:
quasiequation; flat algebra
Summary:
We prove that finite flat digraph algebras and, more generally, finite compatible flat algebras satisfying a certain condition are finitely $q$-based (possess a finite basis for their quasiequations). We also exhibit an example of a twelve-element compatible flat algebra that is not finitely $q$-based.
References:
[1] J.  Lawrence and R.  Willard: On finitely based groups and nonfinitely based quasivarieties. J. Algebra 203 (1998), 1–11. DOI 10.1006/jabr.1997.7470 | MR 1620693
[2] R.  McKenzie: The residual bounds of finite algebras. Internat. J. Alg. Comput. 6 (1996), 1–28. DOI 10.1142/S0218196796000027 | MR 1371732 | Zbl 0844.08009
[3] R.  McKenzie: The residual bound of a finite algebra is not computable. Internat. J. Alg. Comput. 6 (1996), 29–48. DOI 10.1142/S0218196796000039 | MR 1371733 | Zbl 0844.08010
[4] R.  McKenzie: Tarski’s finite basis problem is undecidable. Internat. J. Alg. Comput. 6 (1996), 49–104. DOI 10.1142/S0218196796000040 | MR 1371734 | Zbl 0844.08011
[5] R.  McKenzie, G.  McNulty and W.  Taylor: Algebras, Lattices, Varieties, Vol.  I. Wadsworth & Brooks/Cole, Monterey, 1987. MR 0883644
[6] D.  Pigozzi: Finite basis theorems for relatively congruence-distributive quasivarieties. Transactions of the  AMS 310 (1988), 499–533. DOI 10.1090/S0002-9947-1988-0946222-1 | MR 0946222 | Zbl 0706.08009
Partner of
EuDML logo