[1] L. Boccardo, P. Drábek, D. Giachetti, and M. Kučera: 
Generalizations of Fredholm alternative for nonlinear differential operators. Nonlin. Anal. 10 (1986), 1083–1103. 
DOI 10.1016/0362-546X(86)90091-X | 
MR 0857742 
[2] H. Dang, S. F. Oppenheimer: 
Existence and uniqueness results for some nonlinear boundary value problems. J.  Math. Anal. Appl. 198 (1996), 35–48. 
DOI 10.1006/jmaa.1996.0066 | 
MR 1373525 
[4] F. S. De Blasi, G. Pianigiani: 
The Baire category method in existence problem for a class of multivalued equations with nonconvex right hand side. Funkcialaj Ekvacioj 28 (1985), 139–156. 
MR 0816823 
[6] F. S. De Blasi, G. Pianigiani: 
On the density of extremal solutions of differential inclusions. Annales Polon. Math.  LVI (1992), 133–142. 
MR 1159984 
[9] L. Erbe, W. Krawcewicz: 
Nonlinear boundary value problems for differential inclusions $y^{\prime \prime }\in F(t,y,y^{\prime })$. Annales Polon. Math.  LIV (1991), 195–226. 
MR 1114171 
[10] M. Frigon: 
Theoremes d’existence des solutions d’inclusion differentielles. In: NATO ASI Series, Section C,  472, Kluwer, Dordrecht, 1995, pp. 51–87. 
MR 1368670 
[11] R. Gaines, J. Mawhin: 
Coincidence Degree and Nonlinear Differential Equations. Lecture Notes in Math.  568. Springer-Verlag, New York, 1977. 
MR 0637067 
[12] L. Gasiński, N. S.  Papageorgiou: 
Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems. Chapman and Hall/CRC Press, Boca Raton, 2005. 
MR 2092433 
[13] Z. Guo: 
Boundary value problems of a class of quasilinear ordinary differential equations. Diff. Integ. Eqns. 6 (1993), 705–719. 
Zbl 0784.34018 
[14] N.  Halidias, N. S. Papageorgiou: 
Existence and relaxation results for nonlinear second order multivalued boundary value problems in  $\mathbb{R}^N$. J.  Differ. Equations 147 (1998), 123–154. 
DOI 10.1006/jdeq.1998.3439 | 
MR 1632661 
[17] S. Hu, D. Kandilakis, N. S. Papageorgiou: 
Periodic solutions for nonconvex differential inclusions. Proc. AMS 127 (1999), 89–94. 
MR 1451808 
[18] S. Hu, N. S. Papageorgiou: 
On the existence of periodic solutions for nonconvex-valued differential inclusions in $\mathbb{R}^N$. Proc. AMS 123 (1995), 3043–3050. 
MR 1301503 
[19] S. Hu, N. S. Papageorgiou: 
Handbook of Multivalued Analysis. Volume  I: Theory. Kluwer, Dordrecht, 1997. 
MR 1485775 
[20] S. Hu, N. S. Papageorgiou: 
Handbook of Multivalued Analysis. Volume  II: Applications. Kluwer, Dordrecht, 2000. 
MR 1741926 
[21] D. Kandilakis, N. S. Papageorgiou: 
Existence theorem for nonlinear boundary value problems for second order differential inclusions. J.  Differ. Equations 132 (1996), 107–125. 
DOI 10.1006/jdeq.1996.0173 | 
MR 1418502 
[22] D. Kandilakis, N. S. Papageorgiou: 
Neumann problem for a class of quasilinear differential equations. Atti. Sem. Mat. Fisico Univ. di Modena 48 (2000), 163–177. 
MR 1767378 
[23] H. W. Knobloch: 
On the existence of periodic solutions for second order vector differential equations. J.  Differ. Equations 9 (1971), 67–85. 
MR 0277824 | 
Zbl 0211.11801 
[24] M. Marcus, V. Mizel: 
Absolute continuity on tracks and mappings of Sobolev spaces. Arch. Rational Mech. Anal. 45 (1972), 294–320. 
DOI 10.1007/BF00251378 | 
MR 0338765