Article
Keywords:
(disjoint; non-singular; singular; non-dense) iteration group; (strictly) increasing mapping
Summary:
Let ${\mathcal F}=\lbrace F^{v}\: {\mathbb{S}}^{1}\rightarrow {\mathbb{S}}^{1}, v\in V\rbrace $ be a disjoint iteration group on the unit circle ${\mathbb{S}}^{1}$, that is a family of homeomorphisms such that $F^{v_{1}}\circ F^{v_{2}}=F^{v_{1}+v_{2}}$ for $v_{1}$, $v_{2}\in V$ and each $F^{v}$ either is the identity mapping or has no fixed point ($(V, +)$ is a $2$-divisible nontrivial Abelian group). Denote by $L_{{\mathcal F}}$ the set of all cluster points of $\lbrace F^{v}(z)$, $v\in V\rbrace $ for $z\in {\mathbb{S}}^{1}$. In this paper we give a general construction of disjoint iteration groups for which $\emptyset \ne L_{{\mathcal F}}\ne {\mathbb{S}}^{1}$.
References:
                        
[1] J. S. Bae, K. J. Min, D. H. Sung and S. K. Yang: 
Positively equicontinuous flows are topologically conjugate to rotation flows. Bull. Korean Math. Soc. 36 (1999), 707–716. 
MR 1736616[3] K. Ciepliński: 
On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups. Publ. Math. Debrecen 55 (1999), 363–383. 
MR 1721896[4] K. Ciepliński: 
On conjugacy of disjoint iteration groups on the unit circle. European Conference on Iteration Theory (Muszyna-Złockie, 1998). Ann. Math. Sil. 13 (1999), 103–118. 
MR 1735195[8] M. C. Zdun: 
The structure of iteration groups of continuous functions. Aequationes Math. 46 (1993), 19–37. 
MR 1220719 | 
Zbl 0801.39005