[1] S. Argyros, G. Godefroy, and H. P. Rosenthal: 
Descriptive set theory and Banach spaces. Handbook of the geometry of Banach spaces, Vol. 2. North Holland, Amsterdam (2003), 1007–1069. 
DOI 10.1016/S1874-5849(03)80030-X | 
MR 1999190[5] G. Godefroy, M. Talagrand: Nouvelles classes d’espaces de Banach à prédual unique. Séminaire d’analyse fonctionnelle École Polytechnique, Exposé  $n^\circ 9$ (année 1980–1981).
[6] G. Godefroy: 
Existence and uniqueness of isometric preduals: a survey, Banach space theory (Iowa City,  IA,  1987). Contemp. Math. 85 (1989), 131–193. 
MR 0983385[7] G. Godefroy, N. J. Kalton, and P. D. Saphar: 
Unconditional ideals in Banach spaces. Studia Math. 104 (1993), 13–59. 
MR 1208038[8] M. Fabian, P. Habala, P. Hájek, V. Montesinos Santalucia, J. Pelant, and V. Zizler: 
Functional Analysis and Infinite Dimensional Geometry. CMS  books in Mathematics/Ouvrages de Mathématiques de la  SMC, Vol.  8. Springer-Verlag, New York, 2001. 
MR 1831176[9] R. Haydon, E. Odell, and H. P. Rosenthal: 
On certain classes of Baire-1 functions with applications to Banach space theory. Functional Analysis, Springer-Verlag, , 1991, pp. 1–35. 
MR 1126734[11] A. Kechris, A. Louveau: 
A classification of Baire class 1  functions. Trans. Amer. Math. Soc. 318 (1990), 209–236. 
MR 0946424[12] E. Kissin, V. Lomonosov, and V. Shulman: 
Implementation of derivations and invariant subspaces. Israel J.  Math 134 (2003), 1–28. 
DOI 10.1007/BF02787401 | 
MR 1972173[14] J. Lindenstrauss, C. Stegall: 
Examples of separable spaces which do not contain  $\ell _1$ and whose duals are nonseparable. Studia Math. 54 (1975), 81–105. 
DOI 10.4064/sm-54-1-81-105 | 
MR 0390720[15] J. Lindenstrauss, L. Tzafriri: 
Classical Banach Spaces. I. Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band  92. Springer-Verlag, Berlin-Heidelberg-New York, 1977. 
MR 0500056[16] J. Lindenstrauss, L. Tzafriri: 
Classical Banach Spaces. II. Function Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band  97. Springer-Verlag, Berlin-Heidelberg-New York, 1979. 
MR 0540367[17] E. Odell, H. P. Rosenthal: 
A double-dual characterization of separable Banach spaces containing  $\ell _{1}$. Israel J.  Math. 20 (1975), 375–384. 
DOI 10.1007/BF02760341 | 
MR 0377482[18] A. Pelczynski: 
A connection between weakly unconditional convergence and weak completeness of Banach spaces. Bull. Acad. Pol. Sci. 6 (1958), 251–253. 
MR 0115072[21] H. P. Rosenthal: 
A characterization of Banach spaces containing  $c_{0}$. J.  Amer. Math. Soc. 7 (1994), 707–748. 
MR 1242455[23] A. Sersouri: 
A note of the Lavrentiev index for quasi-reflexive Banach spaces. Banach space theory (Iowa City, IA,  1987). Contemp. Math. 85 (1989), 497–508. 
MR 0983401[24] P. Wojtaszczyk: 
Banach spaces for analysts. Cambridge studies in Advanced Mathematics, Vol. 25. Cambridge University Press, 1991. 
MR 1144277