Previous |  Up |  Next

Article

Title: The Euler-Poincaré-Hopf theorem for flat connections in some transitive Lie algebroids (English)
Author: Kubarski, Jan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 2
Year: 2006
Pages: 359-376
Summary lang: English
.
Category: math
.
Summary: This paper is a continuation of [19], [21], [22]. We study flat connections with isolated singularities in some transitive Lie algebroids for which either $\mathbb{R}$ or $\mathop {\mathrm sl}(2,\mathbb{R})$ or $\operatorname{so} (3)$ are isotropy Lie algebras. Under the assumption that the dimension of the isotropy Lie algebra is equal to $n+1$, where $n$ is the dimension of the base manifold, we assign to any such isolated singularity a real number called an index. For $\mathbb{R}$-Lie algebroids, this index cannot be an integer. We prove the index theorem (the Euler-Poincaré-Hopf theorem for flat connections) saying that the index sum is independent of the choice of a connection. Multiplying this index sum by the orientation class of $M$, we get the Euler class of this Lie algebroid. Some integral formulae for indices are given. (English)
Keyword: Lie algebroid
Keyword: Euler class
Keyword: index theorem
Keyword: integration over the fibre
Keyword: flat connection with singularitity
MSC: 53D17
MSC: 55R25
MSC: 57R19
MSC: 57R20
MSC: 58H05
idZBL: Zbl 1164.57304
idMR: MR2291742
.
Date available: 2009-09-24T11:33:45Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128072
.
Reference: [1] M. Atiyah: Complex analytic connections in fibre bundles.Trans. Amer. Math. Soc. 85 (1957), 181–207. Zbl 0078.16002, MR 0086359, 10.1090/S0002-9947-1957-0086359-5
Reference: [2] B.  Balcerzak, J.  Kubarski, and Walas: Primary characteristic homomorphism of pairs of Lie algebroids and Mackenzie algebroid.In: Lie Algebroids and Related Topics in Differential Geometry, Banach Center Publications, Volume  54, Institute of Mathematics, Polish Academy of Science, Warszawa, 2001, pp. 135–173. MR 1881644
Reference: [3] A. Coste, P. Dazord, and A. Weinstein: Groupoides Symplectiques.Publ. Dep. Math. Université de Lyon  1,  2/A, 1987. MR 0996653
Reference: [4] P. Dazord, D. Sondaz: Varietes de Poisson—Algebroides de Lie.Publ. Dep. Math. Université de Lyon 1, 1/B, 1988. MR 1040867
Reference: [5] S. Evens, J.-H.  Lu, A.  Weinstein: Transverse measures, the modular class, and a cohomology pairing for Lie algebroids.Quarterly J.  Math. (1999), 17–434. MR 1726784
Reference: [6] J.  Grabowski: Lie algebroids and Poisson-Nijenhuis structures.Reports on Mathematics Physics, Vol.  40 (1997). Zbl 1005.53061, MR 1614690
Reference: [7] J.  Grabowski, P.  Urbański: Algebroids—general differential calculi on vector bundles.J.  Geom. Phys. 31 (1999), 111–141. MR 1706624, 10.1016/S0393-0440(99)00007-8
Reference: [8] W.  Greub, S.  Halperin, and R.  Vanstone: Connections, Curvature, and Cohomology. Pure and Aplied Mathematics 47, 47-II, 47-III.Academic Press, New York-London, 1971, 1973, 1976. MR 0400275
Reference: [9] J. C. Herz: Pseudo-algèbres de Lie I, II.C.  R. Acad. Sci. Paris 263 (1953), 1935–1937, 2289–2291. Zbl 0050.03201
Reference: [10] Y.  Kosmann-Schwarzbach: Exact Gerstenhaber Algebras and Lie Bialgebroids.Acta Applicandae Mathematicae 41 (1995), 153–165. Zbl 0837.17014, MR 1362125, 10.1007/BF00996111
Reference: [11] Y.  Kosmann-Schwarzbach: The Lie Bialgebroid of a Poisson-Nijenhuis Manifold.Letters Mathematical Physics 38 (1996), 421–428. Zbl 1005.53060, MR 1421686, 10.1007/BF01815524
Reference: [12] S.  Kobayashi, K.  Nomizu: Foundations of Differential Geometry, Vol. I.Interscience Publishers, New York-London, 1963. MR 0152974
Reference: [13] J.  Kubarski: Pradines-type groupoids over foliations; cohomology, connections and the Chern-Weil homomorphism.Preprint Nr  2, Institute of Mathematics, Technical University of Łódź, August 1986. MR 0946719
Reference: [14] J.  Kubarski: Lie Algebroid of a Principal Fibre Bundle.Publ. Dep. Math. University de Lyon 1, 1/A, 1989. MR 1129261
Reference: [15] J. Kubarski: The Chern-Weil homomorphism of regular Lie algebroids.Publ. Dep. Math. University de Lyon  1, 1991.
Reference: [16] J. Kubarski: A criterion for the minimal closedness of the Lie subalgebra corresponding to a connected nonclosed Lie subgroup.Rev. Math. Complut. 4 (1991), 159–176. Zbl 0766.17004, MR 1145691
Reference: [17] J. Kubarski: Invariant cohomology of regular Lie algebroids.Proceedings of the VIIth  International Colloquium on Differential Geometry, Spain, July 26–30, 1994, World Scientific, Singapure, 1995, pp. 137–151. Zbl 0996.22005, MR 1414200
Reference: [18] J.  Kubarski: Bott’s Vanishing Theorem for Regular Lie Algebroids.Transaction of the A.M.S. Vol.  348, June  1996. Zbl 0858.22009, MR 1357399
Reference: [19] J. Kubarski: Fibre integral in regular Lie algebroids.In: New Developments in Differential Geometry, Proceedings of the Conference on Differential Geometry, Budapest, Hungary, July 27–30, 1996, Kluwer Academic Publishers, , 1999, pp. 173–202. Zbl 0959.58026, MR 1670494
Reference: [20] J.  Kubarski: Connections in regular Poisson manifolds over $\mathbb{R}$-Lie foliations.In: Banach Center Publications, Vol.  51 “Poisson geometry”, , Warszawa, 2000, pp. 141–149. MR 1764441
Reference: [21] J. Kubarski: Gysin sequence and Euler class of spherical Lie algebroids.In: Publicationes Mathematicae Debrecen, Tomus  59 vol. 3–4, 2001, pp. 245–269. Zbl 0999.22003, MR 1874430
Reference: [22] J.  Kubarski: Weil algebra and secondary characteristic homomorphism of regular Lie algebroids.In: Lie algebroids and related topics in differential geometry, Banach Center Publications, Vol. 51, Inst. of Math. Polish Academy of Sciences, Warszawa, 2001, pp. 135–173. MR 1881653
Reference: [23] J. Kubarski: Poincaré duality for transitive unimodular invariantly oriented Lie algebroids.In: Topology and Its Applications, Vol.  121, , , 2002, pp. 333–355. Zbl 1048.58014, MR 1908998
Reference: [24] J. Kubarski: The Euler-Poincaré-Hopf theorem for some regular $\mathbb{R}$-Lie algebroids.In: Proceedings of the Ist Colloquium on Lie Theory and Applications, Universidad de Vigo, 2002, pp. 105–112. MR 1954765
Reference: [25] A.  Kumpera: An introduction to Lie groupoids.Duplicated notes, Núcleo de Estudos e Pesquiese Cientificas, Rio de Janeiro, 1971. (The greater part of these Notes appear as the Appendix of [26]), , , , pp. .
Reference: [26] A.  Kumpera, D. C.  Spencer: Lie equations, Vol.  I: General theory.Annals of Math. Studies, No. 73, Princeton University Press, Princeton, 1972. MR 0380908
Reference: [27] P.  Libermann: Pseudogroupes infinitésimaux attachés aux pseudogroupes de Lie.Bull. Soc. Math. France 87 (1959), 409–425. Zbl 0198.26801, MR 0123279, 10.24033/bsmf.1536
Reference: [28] P.  Libermann: Sur les prolongements des fibrés principaux et groupoides différentiables banachiques.In: Seminaire de mathématiques superieures—élé 1969, Analyse Globale, Les presses de l’Université de Montréal, Montréal, 1971, pp. 7–108. MR 0356117
Reference: [29] K.  Mackenzie: Lie Groupoids and Lie Algebroids in Differential Geometry.Cambridge University Press, Cambridge, 1987. Zbl 0683.53029, MR 0896907
Reference: [30] K. Mackenzie: Lie algebroids and Lie pseudoalgebras.Bull. London Math. Soc. 27 (1995), 97–147. Zbl 0829.22001, MR 1325261, 10.1112/blms/27.2.97
Reference: [31] P. Molino: Etude des feuilletages transversalement complets et applications.Ann. Sci. Ecole Norm. Sup. 10 (1977), 289–307. Zbl 0368.57007, MR 0458446, 10.24033/asens.1328
Reference: [32] P. Molino: Riemannian Foliations. Progress in Mathematics, Vol. 73.Birkhäuser-Verlag, Boston-Basel, 1988. MR 0932463
Reference: [33] L. Maxim-Raileanu: Cohomology of Lie algebroids.An. Sti. Univ. “Al. I. Cuza” Iasi. Sect.  I a Mat.  XXII f2 (1976), 197–199. Zbl 0361.18013, MR 0438358
Reference: [34] Ngo Van Que: Du prolongement des espaces fibrés et des structures infinitésimales.(1967), Ann. Inst. Fourier, Grenoble, 157–223.
Reference: [35] Ngo Van Que: Sur l’espace de prolongement différentiable.J.  of. Diff. Geom. 2 (1968), 33–40. Zbl 0164.22604, MR 0235587, 10.4310/jdg/1214501135
Reference: [36] J.  Pradines: Théorie de Lie pour les groupoides differentiables.In: Atti del Convegno Internazionale di Geometria Differenziale, Bologna, September 28–30, 1967, , , 1970, pp. 233–236. Zbl 0232.22028
Reference: [37] I.  Vaisman: Complementary 2-forms of Poisson Structures.Compositio Mathematica 101 (1996), 55–75. Zbl 0853.58056, MR 1390832
Reference: [38] I.  Vaisman: The $BV$-algebra of a Jacobi manifolds.Annales Polonici Mathematici 73 (2000), 275–290 (arXiv:math.DG/9904112). MR 1785692, 10.4064/ap-73-3-275-290
.

Files

Files Size Format View
CzechMathJ_56-2006-2_7.pdf 438.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo