Previous |  Up |  Next

Article

Title: Signpost systems and spanning trees of graphs (English)
Author: Nebeský, Ladislav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 3
Year: 2006
Pages: 885-893
Summary lang: English
.
Category: math
.
Summary: By a ternary system we mean an ordered pair $(W, R)$, where $W$ is a finite nonempty set and $R \subseteq W \times W \times W$. By a signpost system we mean a ternary system $(W, R)$ satisfying the following conditions for all $x, y, z \in W$: if $(x, y, z) \in R$, then $(y, x, x) \in R$ and $(y, x, z) \notin R$; if $x \ne y$, then there exists $t \in W$ such that $(x, t, y) \in R$. In this paper, a signpost system is used as a common description of a connected graph and a spanning tree of the graph. By a ct-pair we mean an ordered pair $(G, T)$, where $G$ is a connected graph and $T$ is a spanning tree of $G$. If $(G, T)$ is a ct-pair, then by the guide to $(G,T)$ we mean the ternary system $(W, R)$, where $W = V(G)$ and the following condition holds for all $u, v, w \in W$: $(u, v, w) \in R$ if and only if $uv \in E(G)$ and $v$ belongs to the $u-w$ path in $T$. By Proposition 1, the guide to a ct-pair is a signpost system. We say that a signpost system is tree-controlled if it satisfies a certain set of four axioms (these axioms could be formulated in a language of the first-order logic). Consider the mapping $\phi $ from the class of all ct-pairs into the class of all signpost systems such that $\phi ((G, T))$ is the guide to $(G, T)$ for every ct-pair $(G, T)$. It is proved in this paper that $\phi $ is a bijective mapping from the class of all ct-pairs onto the class of all tree-controlled signpost systems. (English)
Keyword: signpost system
Keyword: path
Keyword: connected graph
Keyword: tree
Keyword: spanning tree
MSC: 05C05
MSC: 05C12
MSC: 05C38
MSC: 05C99
MSC: 90B10
idZBL: Zbl 1164.05392
idMR: MR2261660
.
Date available: 2009-09-24T11:39:05Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128113
.
Reference: [1] G.  Chartrand, L.  Lesniak: Graphs & Digraphs. Third edition.Chapman & Hall, London, 1996. MR 1408678
Reference: [2] H. M.  Mulder, L.  Nebeský: Modular and median signpost systems and their underlying graphs.Discussiones Mathematicae Graph Theory 23 (2003), 309–324. MR 2070159, 10.7151/dmgt.1204
Reference: [3] L.  Nebeský: Geodesics and steps in a connected graph.Czechoslovak Math.  J. 47(122) (1997), 149–161. MR 1435613, 10.1023/A:1022404624515
Reference: [4] L.  Nebeský: An axiomatic approach to metric properties of connected graphs.Czechoslovak Math.  J. 50(125) (2000), 3–14. MR 1745453, 10.1023/A:1022472700080
Reference: [5] L.  Nebeský: A tree as a finite nonempty set with a binary operation.Mathematica Bohemica 125 (2000), 455–458. MR 1802293
Reference: [6] L.  Nebeský: On properties of a graph that depend on its distance function.Czechoslovak Math.  J. 54(129) (2004), 445–456. MR 2059265, 10.1023/B:CMAJ.0000042383.98585.97
Reference: [7] L.  Nebeský: Signpost systems and connected graphs.Czechoslovak Math.  J. 55(130) (2005), 283–293. MR 2137138, 10.1007/s10587-005-0022-0
.

Files

Files Size Format View
CzechMathJ_56-2006-3_7.pdf 293.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo