Previous |  Up |  Next

Article

Title: Mahler measures in a cubic field (English)
Author: Dubickas, Artūras
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 56
Issue: 3
Year: 2006
Pages: 949-956
Summary lang: English
.
Category: math
.
Summary: We prove that every cyclic cubic extension $E$ of the field of rational numbers contains algebraic numbers which are Mahler measures but not the Mahler measures of algebraic numbers lying in $E$. This extends the result of Schinzel who proved the same statement for every real quadratic field $E$. A corresponding conjecture is made for an arbitrary non-totally complex field $E$ and some numerical examples are given. We also show that every natural power of a Mahler measure is a Mahler measure. (English)
Keyword: Mahler measure
Keyword: Pisot numbers
Keyword: cubic extension
MSC: 11R06
MSC: 11R09
MSC: 11R16
idZBL: Zbl 1164.11068
idMR: MR2261666
.
Date available: 2009-09-24T11:39:56Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128119
.
Reference: [1] R. L. Adler, B. Marcus: Topological entropy and equivalence of dynamical systems.Mem. Amer. Math. Soc. 20 (1979), . MR 0533691
Reference: [2] D. W. Boyd: Inverse problems for Mahler’s measure.In: Diophantine Analysis. London Math. Soc. Lecture Notes Vol. 109, J.  Loxton and A.  van der Poorten (eds.), Cambridge Univ. Press, Cambridge, 1986, pp. 147–158. Zbl 0612.12002, MR 0874125
Reference: [3] D. W. Boyd: Perron units which are not Mahler measures.Ergod. Th. and Dynam. Sys. 6 (1986), 485–488. Zbl 0591.12003, MR 0873427, 10.1017/S0143385700003643
Reference: [4] D. W. Boyd: Reciprocal algebraic integers whose Mahler measures are non-reciprocal.Canad. Math. Bull. 30 (1987), 3–8. Zbl 0585.12001, MR 0879864, 10.4153/CMB-1987-001-0
Reference: [5] J. D. Dixon, A. Dubickas: The values of Mahler measures.Mathematika 51 (2004), 131–148. MR 2220217, 10.1112/S0025579300015564
Reference: [6] A. Dubickas: Mahler measures close to an integer.Canad. Math. Bull. 45 (2002), 196–203. Zbl 1086.11049, MR 1904083, 10.4153/CMB-2002-022-8
Reference: [7] A. Dubickas: On numbers which are Mahler measures.Monatsh. Math. 141 (2004), 119–126. Zbl 1065.11084, MR 2037988, 10.1007/s00605-003-0010-0
Reference: [8] A. Dubickas: Mahler measures generate the largest possible groups.Math. Res. Lett 11 (2004), 279–283. Zbl 1093.11064, MR 2067473, 10.4310/MRL.2004.v11.n3.a1
Reference: [9] A.-H. Fan, J. Schmeling: $\varepsilon $-Pisot numbers in any real algebraic number field are relatively dense.J.  Algebra 272 (2004), 470–475. MR 2028068, 10.1016/j.jalgebra.2003.09.027
Reference: [10] D. H. Lehmer: Factorization of certain cyclotomic functions.Ann. of Math. 34 (1933), 461–479. Zbl 0007.19904, MR 1503118, 10.2307/1968172
Reference: [11] R. Salem: Algebraic Numbers and Fourier Analysis.D. C.  Heath, Boston, 1963. Zbl 0126.07802, MR 0157941
Reference: [12] A. Schinzel: Polynomials with Special Regard to Reducibility. Encyclopedia of Mathematics and its Applications Vol.  77.Cambridge University Press, Cambridge, 2000. MR 1770638
Reference: [13] A. Schinzel: On values of the Mahler measure in a quadratic field (solution of a problem of Dixon and Dubickas).Acta Arith. 113 (2004), 401–408. Zbl 1057.11046, MR 2079812
Reference: [14] M. Waldschmidt: Diophantine Approximation on Linear Algebraic Groups. Transcendence Properties of the Exponential Function in Several Variables.Springer-Verlag, Berlin-New York, 2000. Zbl 0944.11024, MR 1756786
.

Files

Files Size Format View
CzechMathJ_56-2006-3_13.pdf 323.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo