[3] K. Akin, D. A. Buchsbaum: 
Representations, resolutions and intertwining numbers. In: Communications in Algebra, Springer-Verlag, Berlin-New York, 1989, pp. 1–19. 
MR 1015510[4] K. Akin, D. A. Buchsbaum: Resolutions and intertwining numbers. In: Proceedings of a Micro-program, June 15–July 2, 1987, Springer-Verlag, New York.
[6] K. Akin, J. Weyman: 
The irreducible tensor representations of $gl(m\mathrel | 1)$ and  their  generic homology. J.  Algebra 230 (2000), 5–23. 
DOI 10.1006/jabr.1999.7986 | 
MR 1774756[7] D. A. Buchsbaum: 
Aspects of characteristic-free representation theory of ${\mathrm GL}_n$, and some application to intertwining numbers. Acta Applicandae Mathematicae 21 (1990), 247–261. 
DOI 10.1007/BF00053299 | 
MR 1085780[10] R. W. Carter, G. Lusztig: 
On the modular representation of the general linear and symmetric groups. Math.  Z. 136 (1974), . 
MR 0354887[11] R. W. Cater, J. Payne: 
On homomorphism between Weyl modules and Specht modules. Math. Proc. Cambridge Philos. Soc. 87 (1980), . 
MR 0556922[13] W. Fulton, J. Harris: 
Representation Theory. A First Course. Springer-Verlag, New York, 1991. 
MR 1153249[15] J. A. Green: Polynomial Representation of  ${\mathrm GL}_n$. Lectures Notes in Mathematics, No. 830. Springer-Verlag, Berlin, 1980.
[17] U. Kulkarni: 
Skew Weyl modules for  ${\mathop {\mathrm GL}\nolimits }_n$ and degree reduction for Schur algebras. J.  Algebra 224 (2000), 248–262. 
DOI 10.1006/jabr.1999.8042 | 
MR 1739579