Previous |  Up |  Next

Article

Keywords:
subdirectly irreducible unary algebra
Summary:
We prove that a finite unary algebra with at least two operation symbols is a homomorphic image of a (finite) subdirectly irreducible algebra if and only if the intersection of all its subalgebras which have at least two elements is nonempty.
References:
[1] S.  Bulman-Fleming, E.  Hotzel, and J.  Wang: Semigroups that are factors of subdirectly irreducible semigroups by their monolith. Algebra Universalis 51 (2004), 1–7. DOI 10.1007/s00012-004-1823-y | MR 2067147
[2] J.  Ježek, T.  Kepka: The factor of a subdirectly irreducible algebra through its monolith. Algebra Universalis 47 (2002), 319–327. DOI 10.1007/s00012-002-8192-1 | MR 1918733
[3] T.  Kepka: On a class of subdirectly irreducible groupoids. Acta Univ. Carolinae Math. Phys. 22 (1981), 17–24. MR 0635973 | Zbl 0478.08005
[4] T.  Kepka: A note on subdirectly irreducible groupoids. Acta Univ. Carolinae Math. Phys. 22 (1981), 25–28. MR 0635974 | Zbl 0481.08001
[5] T.  Kepka: On a class of groupoids. Acta Univ. Carolinae Math. Phys. 22 (1981), 29–49. MR 0635975 | Zbl 0481.08002
[6] R.  McKenzie, G.  McNulty, and W.  Taylor: Algebras, Lattices, Varieties, Volume  I. Wadsworth & Brooks/Cole, Monterey, 1987. MR 0883644
[7] R.  McKenzie, D.  Stanovský: Every quasigroup is isomorphic to a subdirectly irreducible quasigroup modulo its monolith. Acta Sci. Math. (Szeged) 72 (2006), 59–64. MR 2249239
[8] D.  Stanovský: Homomorphic images of subdirectly irreducible groupoids. Comment. Math. Univ. Carolinae 42 (2001), 443–450. MR 1859591
[9] M.  Yoeli: Subdirectly irreducible unary algebras. Am. Math. Mon. 74 (1967), 957–960. DOI 10.2307/2315275 | MR 0228293 | Zbl 0153.33802
Partner of
EuDML logo