Article
Keywords:
Toeplitz operators; pluriharmonic Bergman spaces; Carleson measure
Summary:
We study Toeplitz operators between the pluriharmonic Bergman spaces for positive symbols on the ball. We give characterizations of bounded and compact Toeplitz operators taking a pluriharmonic Bergman space $b^p$ into another $b^q$ for $1 < p, q < \infty $ in terms of certain Carleson and vanishing Carleson measures.
References:
[2] B. R. Choe, Y. J. Lee, and K. Na:
Positive Toeplitz operators from a harmonic Bergman space into another. Tohoku Math. J. 56 (2004), 255–270.
DOI 10.2748/tmj/1113246553 |
MR 2053321
[7] K. Zhu:
Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains. J. Oper. Theory 20 (1988), 329–357.
MR 1004127 |
Zbl 0676.47016
[8] W. Rudin:
Function Theory in the Unit Ball of $\mathbb{C}^n$. Springer-Verlag, New York, 1980.
MR 0601594