[1] T. Asano, T. Nishizeki and T. Watanabe: 
An upper bound on the length of a Hamiltonian walk of a maximal planar graph. J. Graph Theory 4 (1980), 315–336. 
DOI 10.1002/jgt.3190040310 | 
MR 0584677 
[2] T. Asano, T. Nishizeki and T. Watanabe: 
An approximation algorithm for the Hamiltonian walk problems on maximal planar graphs. Discrete Appl. Math. 5 (1983), 211–222. 
DOI 10.1016/0166-218X(83)90042-2 | 
MR 0683513 
[4] G. Chartrand, T. Thomas, V. Saenpholphat and P. Zhang: 
On the Hamiltonian number of a graph. Congr. Numer. 165 (2003), 51–64. 
MR 2049121 
[5] G. Chartrand, T. Thomas, V. Saenpholphat and P. Zhang: 
A new look at Hamiltonian walks. Bull. Inst. Combin. Appl. 42 (2004), 37–52. 
MR 2082480 
[6] G. Chartrand and P. Zhang: Introduction to Graph Theory. McGraw-Hill, Boston, 2005.
[7] S. E. Goodman and S. T. Hedetniemi: 
On Hamiltonian walks in graphs. Congr. Numer. (1973), 335–342. 
MR 0357223 
[9] L. Nebeský: 
A generalization of Hamiltonian cycles for trees. Czech. Math. J. 26 (1976), 596–603. 
MR 0543670 
[10] F. Okamoto, V. Saenpholphat and P. Zhang: 
Measures of traceability in graphs. Math. Bohem. 131 (2006), 63–83. 
MR 2211004 
[11] V. Saenpholphat and P. Zhang: 
Graphs with prescribed order and Hamiltonian number. Congr. Numer. 175 (2005), 161–173. 
MR 2198624