Previous |  Up |  Next

Article

Title: BMO-scale of distribution on $\mathbb {R}^n$ (English)
Author: Castillo, René Erlín
Author: Fernández, Julio C. Ramos
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 2
Year: 2008
Pages: 505-516
Summary lang: English
.
Category: math
.
Summary: Let $S^{\prime }$ be the class of tempered distributions. For $f\in S^{\prime }$ we denote by $J^{-\alpha }f$ the Bessel potential of $f$ of order $\alpha $. We prove that if $J^{-\alpha }f\in \mathop {\mathrm BMO}$, then for any $\lambda \in (0,1)$, $J^{-\alpha }(f)_\lambda \in \mathop {\mathrm BMO}$, where $(f)_\lambda =\lambda ^{-n}f(\phi (\lambda ^{-1}\cdot ))$, $\phi \in S$. Also, we give necessary and sufficient conditions in order that the Bessel potential of a tempered distribution of order $\alpha >0$ belongs to the $\mathop {\mathrm VMO}$ space. (English)
Keyword: $\mathop {\rm BMO}$
Keyword: $\mathop {\rm VMO}$
Keyword: John and Niereberg
Keyword: Bessel potential
MSC: 32A37
MSC: 46E30
MSC: 46F05
idZBL: Zbl 1171.46310
idMR: MR2411106
.
Date available: 2009-09-24T11:56:35Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128274
.
Reference: [1] F. John and L. Nirenberg: On functions of bounded mean oscillation.Comm. Pure Appl. Math. 14 (1961), 415–426. MR 0131498, 10.1002/cpa.3160140317
Reference: [2] D. Sarason: Functions of bounded mean oscillation.Trans. Amer. Math. Soc. 201 (1975), 391–405. MR 0377518
Reference: [3] E. M. Stein: Singular Integrals and Differentiability Properties of Functions.Princenton University Press, Princenton, NJ, 1970. Zbl 0207.13501, MR 0290095
Reference: [4] W. R. Wade: An introduction to Analysis, 2nd ed.Prentice Hall, NJ, 2000. Zbl 0951.26001
.

Files

Files Size Format View
CzechMathJ_58-2008-2_16.pdf 268.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo