[1] S. Bochner:
Weak solutions of linear partial differential equations. J. Math. Pures Appl. 35 (1956), 193–202.
MR 0081446 |
Zbl 0070.31502
[5] J.A. Cima and S.G. Krantz:
The Lindelöf principle and normal functions of several complex variables. Duke Math. J. 50 (1983), 303–328.
MR 0700143
[8] I.R. Graham:
Removable singularities for holomorphic functions which satisfy the area-BMO condition. Several Complex Variables, Proc. Hangzhou Conf. 1981, J.J. Kohn, Q.-k. Lu, R. Remmert and Y.T. Siu (eds.), Birkhäuser Boston, Inc., Boston, Mass., 1984, pp. 175–180.
MR 0897594
[9] R. Harvey and J.C. Polking:
Removable singularities of solutions of linear partial differential equations. Acta Math. 125 (1970), 39–56.
DOI 10.1007/BF02838327 |
MR 0279461
[11] J. Hyvönen and J. Riihentaus:
Removable singularities for holomorphic functions with locally finite Riesz mass. J. London Math. Soc. (2) 35 (1987), 296–302.
DOI 10.1112/jlms/s2-35.2.296 |
MR 0881518
[17] O. Lehto and K.I. Virtanen:
On the behaviour of meromorphic functions in the neighborhood of an isolated singularity. Ann. Acad. Sci. Fenn. A I Math. 240 (1957), 1–9.
MR 0087747
[19] D. Minda:
Bloch and normal functions on general planar regions. Holomorphic functions and moduli, Vol. I, Proc. Workshop Berkeley, CA, 1986, Math. Sci. Res. Inst. Publ. 10, D. Drasin, C.J. Earle, F.W. Gehring, I. Kra and A. Marden (eds.), Springer, New York, 1988, pp. 101–110.
MR 0955812 |
Zbl 0654.30025
[20] E.A. Poletski${\breve{\text{i}}}$ and B.V. Shabat: Invariant metrics. Encyclopaedia of Mathematical Sciences, Vol. 9, Several complex variables III, G.M. Khenkin (ed.), Springer, Berlin, 1989, pp. 63–111.
[21] J.C. Polking:
A survey of removable singularities. Seminar on Nonlinear Partial Differential Equations, Berkeley, CA, 1983, Math. Sci. Res. Inst. Publ. 2, S.S. Chern (ed.), Springer, New York, 1984, pp. 261–292.
MR 0765238 |
Zbl 0564.35001
[26] M. Vuorinen:
Conformal geometry and quasiregular mappings. Springer, LNM 1319, Berlin, 1988.
MR 0950174 |
Zbl 0646.30025