[1] K. Borsuk:
Theory of retracts. PWN Polish Scientific Publishers, Warszawa, 1966.
MR 0216473
[2] A. Bressan, A. Cellina and A. Fryszkowski:
A class of absolute retracts in spaces of integrable functions. Proc. Amer. Math. Soc. 111 (1991), 413–418.
DOI 10.1090/S0002-9939-1991-1045587-8
[3] A. Cellina:
On the set of solutions to Lipschitzean differential inclusions. Diff. and Integral Equations 1 (1988), 495–500.
MR 0945823
[5] N. Dunford and J.T. Schwartz: Linear operators, part I. Interscience, New-York, 1957.
[6] L. Górniewicz and T. Pruszko:
On the set of solutions of the Darboux problem for some hyperbolic equations. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 38 (1980), 279–285.
MR 0620202
[10] N.S. Papageorgiou:
A property of the solution set of differential inclusions in Banach spaces with Carathéodory orientor field. Applicable Analysis 27 (1988), 279–287.
DOI 10.1080/00036818808839741 |
MR 0936472
[11] V. Staicu:
On a non-convex hyperbolic differential inclusion. Proc. Edinburgh Math. Soc (to appear).
Zbl 0769.34018
[12] G. Teodoru:
A characterization of the solutions of the Darboux problem for the equation $z_{xy}\in F(x,y,u)$. An. Ştiinţ. Univ. “Al. I. Cuza” Iaşi Sect. I a Mat. 33 (1987), 33–38.
MR 0925687