Previous |  Up |  Next

Article

References:
[1] ABEL N. H.: Untersuchung der Funktionen zweier unabhängig veränderlicher Großen x and y, wie f(x,y), welche die Eigenschaft haben, daß f(z,f(x,y)) eine symmetrische Funktion von z, x und y ist. J. Reine Angew. Math.1 (1826). 11-15.
[2] ACZÉL J.: The State of the second part of Hilbert's Fifth Problem. Bull. Anier. Math. Soc. 20 (1989). 153-163. MR 0981872 | Zbl 0676.39004
[3] BOREL A.: Deane Montgomery 1909-1992. Notices Anier. Math. Soc. 39 (1992). 684-687. MR 1180013 | Zbl 1194.01066
[4] BROWN D. R., HOUSTON. R. S.: Cancellative semigroups on manifolds. Semigroup Forum 35 (1987). 279-302. MR 0900105 | Zbl 0626.22001
[5] COMFORT W. W., HOFMANN. K. H., REMUS D.: Topological groups and semigroups. In: Recent Progress in General Topology (M. Hušek and J. van Mill. eds.). Elsevier 1992, pp. 57-144. MR 1229123 | Zbl 0798.22001
[4] GLEASON. A. M.: Groups without small subgroups. Ann. of Math. 56 (1952). 193-212. MR 0049203 | Zbl 0049.30105
[7] GRUNDHÖFFER T., SALZMANN H., STROPPEL M.: M.: Compact Projective Plains. (In preparation).
[8] HILGERT J., HOFMANN. K. H., LAWSON. J. D.: Lie groups, convex cones, and semigroups. Oxford university Press, 1989. MR 1032761 | Zbl 0701.22001
[9] HILGERT J., NEEB K.-H.: Lie Semigroups and their Applications. Lecture Notes in Math. 1552. Springer-New York-Berlin, 1993. MR 1317811 | Zbl 0807.22001
[10] HOFMANN K. H., MOSTERT P. S.: Elements of Compact Semigroups. Charles R. Merrill Books. Columbus. Ohio. 1966. MR 0209387 | Zbl 0161.01901
[11] HOFMANN K. H., WEISS W.: More on cancellative semigroups on manifolds. Semigroup Forum 37 (1988), 93-111. MR 0929446 | Zbl 0635.22003
[12] IWASAWA K.: On some types of topological groups. Ann. of Math. 50 (1949), 507-557. MR 0029911 | Zbl 0034.01803
[13] JACOBY R.: Some theorems on the structure of locally compact local groups. Ann. of Math. 50 (1957), 36-69. MR 0089997 | Zbl 0084.03202
[14] von KOCH H.: Sur un curbe continue sans tangente obtenue par une construction géométrique élémentaire. Acta Math. 30 (1906), 145-174. MR 1555026
[15] Mathematical Developments Arising from Hilbert Problems. Proc. Sympos. Pure Math. XXXVIII. Amer. Math. Soc., Providence, R.I., 1976. Zbl 0326.00002
[16] Deane Montgomery 1909-1992. Collection of Addresses delivered at the Institute for Advanced Study on November 13, 1992, Inst. Adv. Study, Princeton, 1993.
[17] MONTGOMERY D., ZIPPIN L.: Small subgroups of finite dimensional groups. Ann. of Math. 56 (1952), 213-241. MR 0049204 | Zbl 0049.30107
[18] NEEB. K.-H.: Holomorphic Representation Theory and Coadjoint Orbits of Convexity Type. Habilitationsschrift, Technische Hochschule, Darmstadt, 1993.
[19] SCHWARZ S.: Remark on bicompact semigroups. Mat.-Fyz. Časopis 5 (1955), 86-89. MR 0077872
[20] SCHWARZ S.: On Hausdorff bicompact semigroups. Czechoslovak Math. J. 5(80) (1955), 1-23. MR 0074769 | Zbl 0068.02301
[21] SCHWARZ S.: Characters of bicompact semigroups. Czechoslovak Math. J. 5(80) (1955), 24-28. MR 0074770
[22] SCHWARZ S.: The theory of characters of commutative Hausdorff bicompact semigroups. Czechoslovak Math. J. 6(81) (1956), 330-364. MR 0092098
[23] SKLJARENKO E. G.: Zum 5. Hilbertschen Problem. In: Ostwalds Klassiker Exakt. Wiss. 252. Akad. Verl. Gesellsch., Leipzig, 1987, pp. 21-24.
[24] YAMABE H.: On the conjecture of Iwasawa and Gleason. Ann. of Math 58 (1953), 48-54. MR 0054613 | Zbl 0053.01601
[25] YAMABE H.: Generalization of a theorem of Gleason. Ann. of Math 58 (1953), 351-365. MR 0058607 | Zbl 0053.01602
[26] HOFMANN K. H., LAWSON J. D.: Linearly ordered semigroups: A historical overview. In: Progress in Semigroups and Related Areas (K. H. Hofmann and M. Mislove, eds.), 1994 (To appear). MR 0376461
Partner of
EuDML logo