Previous |  Up |  Next

Article

References:
[1] ALFSEN E. M.: Compact Convex Sets and Boundary Integrals. Springer, Berlin, 1971. MR 0445271 | Zbl 0209.42601
[2] ASIMOW L.-ELLIS A. J.: Convexity Theory and Its Applications in Functional Analysis. Academic Press, London, 1980. MR 0623459 | Zbl 0453.46013
[3] BARRA J. R.: Notions fondamentales de statistique mathématique. Dunod, Paris, 1971. MR 0402992 | Zbl 0257.62004
[4] BAUER H.: Probability Theory and Elements of Measure Theory. Academic Press, London, 1981. MR 0636091 | Zbl 0466.60001
[5] BELTRAMETTI E. G.-BUGAJSKI S.: A Classical extension of quantum mechanics. J. Phys. A 28 (1995), 3329-3343. Quantum observables in classical frameworks, Internat. J. Theoгet. Phys. 34 (1995), 1221-1229. MR 1344371 | Zbl 0859.46049
[б] BELTRAMETTI E. G.-BUGAJSKI S.: Effect algebras and statistical physical theories. J. Math. Phys. 38 (1997), 3020-3030. MR 1449546 | Zbl 0874.06009
[7] BILLINGSLEY P.: Ergodic Theory and Information. Wiley, New York, 1965. MR 0192027 | Zbl 0141.16702
[8] BILLINGSLEY P.: Probability and Measure. Wiley, New Yoгk, 1979. MR 0534323 | Zbl 0411.60001
[9] BUGAJSKI S.: Fundamentals of fuzzy probability theory. Internat. J. Theoret. Phys. 35 (1996), 2229-2244. MR 1423402 | Zbl 0872.60003
[10] BUGAJSKI S.: Fuzzy stochastic processes. Open Syst. Inf. Dyn. 5 (1998), 169-185. Zbl 0908.60044
[11] BUGAJSKI S.: Net entropies of fuzzy stochastic processes. Open Syst. Inf. Dyn. 5 (1998), 187-200. Zbl 0908.60044
[12] BUGAJSKI S.: Fuzzy dynamics in terms of fuzzy probability theory. In: IFSA '97 Prague. Seventh International Fuzzy Systems Association World Congress. Proceedings Vol. IV (M. Mareš, R. Mesiar, V. Novák, J. Ramík, A. Stupňanová, eds.), Academia, Pгague, 1997, pp. 255-260.
[13] BUGAJSKI S.: Statistical maps II. Operational random variables and the Bell phenomenon. Math. Slovaca 51 (2001), 343-361. MR 1842321 | Zbl 1088.81022
[14] BUGAJSKI S.-HELLWIG K.-E.-STULPE W.: On fuzzy random variables and statistical maps. Rep. Math. Phys. 41 (1998), 1-11. MR 1617902 | Zbl 1026.60501
[15] BUSCH P.-RUCH E.: The measure cone: irreversibüity as a geometrical phenomenon. Internat. J. Q. Chem. 41 (1992), 163-185.
[16] GUDDER S.: Fuzzy probability theory. Demonstratio Math. 31 (1998), 235-254. MR 1623780 | Zbl 0984.60001
[17] MACKEY G.: The Mathematical Foundations of Quantum Mechanics. Benjamin, New York, 1963. Zbl 0114.44002
[18] NEVEU J.: Mathematical Foundations of the Calculus of Probability. Holden-Day, Inc, San Francisco, 1965 [French original: Bases mathématiques du calcul des probabilités, Mason et Cie, Paris, 1964]. MR 0198505 | Zbl 0137.11301
[19] REED M.-SIMON B.: Methods of Modern Mathematical Physics 1. Functional Analysis, Academic Press, New York, 1972. Zbl 0242.46001
[20] RIEČAN B.-NEUBRUNN T.: Integral, Measure, and Ordeńng. Math. Appl. 411, Kluwer, Dordrecht, 1997.
[21] RUDIN W.: Functional Analysis. McGraw-Hill, New York, 1973. MR 0365062 | Zbl 0253.46001
[22] SCHAEFER H. H.: Topological Vector Spaces. (Зrd ed.), Springer-Verlag, Berlin, 1971. MR 0342978 | Zbl 0217.16002
[23] SINGER M.-STULPE W.: Phase-space representations of general statistical physical theories. J. Math. Phys. 33 (1992), 131-142. MR 1141510
[24] STULPE W.: Conditional expectations, conditional distributions, and a posteriori ensembles in generalized probability theory. Internat. J. Theoret. Phys. 27 (1988), 587-611. MR 0950546 | Zbl 0645.60007
[25] VERSIK A. M.: Multivalued mappings with invariant measure (polymorphisms) and Markov operators. Zap. Nauchn. Sem. S.-Peterburg. (Leningrad.) Otdel. Mat. Inst. Steklov. (POMI) ((LOMI)) 72 (1977), 26-61, 223. (Russian) MR 0476998
[26] WERNER R.: Physical uniformities on the state space of nonrelativistic quantum mechanics, Found. Phys. 13 (1983), 859-881. MR 0788064
Partner of
EuDML logo