[2] ASIMOW L.-ELLIS A. J.:
Convexity Theory and Its Applications in Functional Analysis. Academic Press, London, 1980.
MR 0623459 |
Zbl 0453.46013
[4] BAUER H.:
Probability Theory and Elements of Measure Theory. Academic Press, London, 1981.
MR 0636091 |
Zbl 0466.60001
[5] BELTRAMETTI E. G.-BUGAJSKI S.:
A Classical extension of quantum mechanics. J. Phys. A 28 (1995), 3329-3343. Quantum observables in classical frameworks, Internat. J. Theoгet. Phys. 34 (1995), 1221-1229.
MR 1344371 |
Zbl 0859.46049
[б] BELTRAMETTI E. G.-BUGAJSKI S.:
Effect algebras and statistical physical theories. J. Math. Phys. 38 (1997), 3020-3030.
MR 1449546 |
Zbl 0874.06009
[9] BUGAJSKI S.:
Fundamentals of fuzzy probability theory. Internat. J. Theoret. Phys. 35 (1996), 2229-2244.
MR 1423402 |
Zbl 0872.60003
[10] BUGAJSKI S.:
Fuzzy stochastic processes. Open Syst. Inf. Dyn. 5 (1998), 169-185.
Zbl 0908.60044
[11] BUGAJSKI S.:
Net entropies of fuzzy stochastic processes. Open Syst. Inf. Dyn. 5 (1998), 187-200.
Zbl 0908.60044
[12] BUGAJSKI S.: Fuzzy dynamics in terms of fuzzy probability theory. In: IFSA '97 Prague. Seventh International Fuzzy Systems Association World Congress. Proceedings Vol. IV (M. Mareš, R. Mesiar, V. Novák, J. Ramík, A. Stupňanová, eds.), Academia, Pгague, 1997, pp. 255-260.
[13] BUGAJSKI S.:
Statistical maps II. Operational random variables and the Bell phenomenon. Math. Slovaca 51 (2001), 343-361.
MR 1842321 |
Zbl 1088.81022
[14] BUGAJSKI S.-HELLWIG K.-E.-STULPE W.:
On fuzzy random variables and statistical maps. Rep. Math. Phys. 41 (1998), 1-11.
MR 1617902 |
Zbl 1026.60501
[15] BUSCH P.-RUCH E.: The measure cone: irreversibüity as a geometrical phenomenon. Internat. J. Q. Chem. 41 (1992), 163-185.
[17] MACKEY G.:
The Mathematical Foundations of Quantum Mechanics. Benjamin, New York, 1963.
Zbl 0114.44002
[18] NEVEU J.:
Mathematical Foundations of the Calculus of Probability. Holden-Day, Inc, San Francisco, 1965 [French original: Bases mathématiques du calcul des probabilités, Mason et Cie, Paris, 1964].
MR 0198505 |
Zbl 0137.11301
[19] REED M.-SIMON B.:
Methods of Modern Mathematical Physics 1. Functional Analysis, Academic Press, New York, 1972.
Zbl 0242.46001
[20] RIEČAN B.-NEUBRUNN T.: Integral, Measure, and Ordeńng. Math. Appl. 411, Kluwer, Dordrecht, 1997.
[23] SINGER M.-STULPE W.:
Phase-space representations of general statistical physical theories. J. Math. Phys. 33 (1992), 131-142.
MR 1141510
[24] STULPE W.:
Conditional expectations, conditional distributions, and a posteriori ensembles in generalized probability theory. Internat. J. Theoret. Phys. 27 (1988), 587-611.
MR 0950546 |
Zbl 0645.60007
[25] VERSIK A. M.:
Multivalued mappings with invariant measure (polymorphisms) and Markov operators. Zap. Nauchn. Sem. S.-Peterburg. (Leningrad.) Otdel. Mat. Inst. Steklov. (POMI) ((LOMI)) 72 (1977), 26-61, 223. (Russian)
MR 0476998
[26] WERNER R.:
Physical uniformities on the state space of nonrelativistic quantum mechanics, Found. Phys. 13 (1983), 859-881.
MR 0788064