[3] BIRKHOFF G.:
Lattice Theory. (3rd ed.). Amer. Math. Soc .Colloq. Publ. 25, Amer. Math. Soc., Providence, RI, 1979.
MR 0598630 |
Zbl 0505.06001
[4] DAVID E.-ERNÉ M.:
Ideal completion and Stone representation of ideal-distributive ordered sets. Topology Appl. 44 (1992), 95-113.
MR 1173247 |
Zbl 0768.06003
[5] DAVEY B. A.-PRIESTLEY H. A.:
Introduction to Lattices and Order. Cambridge University Press, Cambridge, 1990.
MR 1058437 |
Zbl 0701.06001
[6] ERNÉ M.:
Distributivgesetze und Dedekindsche Schnitte. Abh. Braunschw. Wiss. Ges. 33 (1982), 117-145.
MR 0693169
[7] ERNÉ M.:
Bigeneration in complete lattices and principal separation in partially ordered sets. Order 8 (1991), 197-221.
MR 1137911
[8] ERNÉ M.:
Semidistributivity, prime ideals, and the subbase lemma. Rend. Circ. Mat. Palermo (2) 41 (1992), 241-250.
MR 1196618 |
Zbl 0779.06001
[9] ERNÉ M.:
Distributive laws for concept lattices. Algebra Universalis 30 (1993), 538-580.
MR 1240572 |
Zbl 0795.06006
[10] ERNÉ M.:
Prime ideal theorems and systems of finite character. Comment. Math. Univ. Carolin. 38 (1997), 513-536.
MR 1485072 |
Zbl 0938.03072
[11] ERNÉ M.:
Prime ideal theory for general algebras. Appl. Categ. Structures 8 (2000), 115-144.
MR 1785840 |
Zbl 0980.08001
[12] ERNÉ M.-WILKE G.:
Standard completions for quasiordered sets. Semigroup Forum 27 (1983), 351-376.
MR 0714681 |
Zbl 0517.06009
[15] GANTER B.-WILLE R.:
Formal Concept Analysis - Mathematical Foundation. Springer-Verlag, Berlin-Heidelberg-New York, 1999.
MR 1707295
[16] GIERZ G.-HOFMANN K. H.-KEIMEL K.-LAWSON J. D.-MISLOVE M.-SCOTT D. S.:
Continuous Lattices and Domains. Encyclopedia Math. Appl. 93, Cambridge University Press, Cambridge, 2003.
MR 1975381 |
Zbl 1088.06001
[17] GORBUNOV A. V.-TUMANOV V. L.:
On the existence of prime ideals in semidistributive lattices. Algebra Universalis 16 (1983), 250-252.
MR 0692266 |
Zbl 0516.06006
[18] GRÄTZER G.: General Lattice Theory. Birkhäuser, Basel, 1973.
[19] HALPERN J.-LÉVY A.:
The Boolean prime ideal theorem does not imply the axiom of choice. In: Axiomatic Set Theory. Proc Symp. Pure Math. Amer. Math. Soc University of California, Los Angeles, July 10-August 5, 1967 (D. Scott, ed.), Proc Sympos. Pure Math. 13, Amer. Math. Soc, Providence, RI, 1971, pp. 83-134.
MR 0284328
[20] HERRLICH H.:
The axiom of choice holds if and only if maximal closed filters exist. MLQ Math. Log. Q. 49 (2003), 323-324.
MR 1979139
[21] HOWARD P.-RUBIN J. E.:
Consequences of the Axiom of Choice. Math. Surveys Monogr. 59, Amer. Math. Soc, Providence, RI, 1998.
MR 1637107 |
Zbl 0947.03001
[23] KATRIŇÁK T.:
Pseudokomplementare Halbverbande. Mat. Casopis 18 (1968), 121-143.
MR 0262123
[24] KATRIŇÁK T.:
The structure of distributive p-algebras. Regularity and congruences. Algebra Universalis 3 (1973), 238-246.
MR 0332598
[25] KATRIŇÁK T.:
A new proof of the Glivenko-Frink Theorem. Bull. Soc Roy. Sci. Liege 50 (1981), 171.
MR 0646688 |
Zbl 0482.06001
[26] LARMEROVÁ J.-RACHŮNEK J.:
Translations of distributive and modular ordered sets. Acta Univ. Palack. Olomuc. Fac. Rerum. Natur. Math. 27 (1988), 13-23.
MR 1039879 |
Zbl 0693.06003
[27] NIEDERLE J.:
Boolean and distributive ordered sets: characterization and representation by sets. Order 12 (1995), 189-210.
MR 1354802 |
Zbl 0838.06004
[28] RHINEGHOST Y. T.:
The Boolean prime ideal theorem holds if and only if maximal open filters exist. Cah. Topol. Geom. Differ. Categ. 43 (2002), 313-315.
MR 1949661
[29] RUBIN H.-SCOTT D.: Some topological theorems equivalent to the Boolean prime ideal theorem. Bull. Amer. Math. Soc. 60 (1954), 389.
[30] SCOTT D.: The theorem on maximal ideals in lattices and the axiom of choice. Bull. Amer. Math. Soc. 60 (1954), 83.
[31] TARSKI A.: Prime ideal theorems for Boolean algebras and the axiom of choice. Bull. Amer. Math. Soc. 60 (1954), 390-391 (Abstract).