Previous |  Up |  Next

Article

References:
[1] ALEXANDROFF P.: Diskrete Räume. Mat. Sb. 2 (1937), 501-518. MR 0004764 | Zbl 0018.09105
[2] BANASCHEWSKI B.-ERNÉ M.: On Krull's separation lemma. Order 10 (1993), 253-260. MR 1267191 | Zbl 0795.06005
[3] BIRKHOFF G.: Lattice Theory. (3rd ed.). Amer. Math. Soc .Colloq. Publ. 25, Amer. Math. Soc., Providence, RI, 1979. MR 0598630 | Zbl 0505.06001
[4] DAVID E.-ERNÉ M.: Ideal completion and Stone representation of ideal-distributive ordered sets. Topology Appl. 44 (1992), 95-113. MR 1173247 | Zbl 0768.06003
[5] DAVEY B. A.-PRIESTLEY H. A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge, 1990. MR 1058437 | Zbl 0701.06001
[6] ERNÉ M.: Distributivgesetze und Dedekindsche Schnitte. Abh. Braunschw. Wiss. Ges. 33 (1982), 117-145. MR 0693169
[7] ERNÉ M.: Bigeneration in complete lattices and principal separation in partially ordered sets. Order 8 (1991), 197-221. MR 1137911
[8] ERNÉ M.: Semidistributivity, prime ideals, and the subbase lemma. Rend. Circ. Mat. Palermo (2) 41 (1992), 241-250. MR 1196618 | Zbl 0779.06001
[9] ERNÉ M.: Distributive laws for concept lattices. Algebra Universalis 30 (1993), 538-580. MR 1240572 | Zbl 0795.06006
[10] ERNÉ M.: Prime ideal theorems and systems of finite character. Comment. Math. Univ. Carolin. 38 (1997), 513-536. MR 1485072 | Zbl 0938.03072
[11] ERNÉ M.: Prime ideal theory for general algebras. Appl. Categ. Structures 8 (2000), 115-144. MR 1785840 | Zbl 0980.08001
[12] ERNÉ M.-WILKE G.: Standard completions for quasiordered sets. Semigroup Forum 27 (1983), 351-376. MR 0714681 | Zbl 0517.06009
[13] FRINK O.: Ideals in partially ordered sets. Amer. Math. Monthly 61 (1954), 223-234. MR 0061575 | Zbl 0055.25901
[14] FRINK O.: Pseudo-complements in semi-lattices. Duke Math. J. 29 (1962), 505-514. MR 0140449 | Zbl 0114.01602
[15] GANTER B.-WILLE R.: Formal Concept Analysis - Mathematical Foundation. Springer-Verlag, Berlin-Heidelberg-New York, 1999. MR 1707295
[16] GIERZ G.-HOFMANN K. H.-KEIMEL K.-LAWSON J. D.-MISLOVE M.-SCOTT D. S.: Continuous Lattices and Domains. Encyclopedia Math. Appl. 93, Cambridge University Press, Cambridge, 2003. MR 1975381 | Zbl 1088.06001
[17] GORBUNOV A. V.-TUMANOV V. L.: On the existence of prime ideals in semidistributive lattices. Algebra Universalis 16 (1983), 250-252. MR 0692266 | Zbl 0516.06006
[18] GRÄTZER G.: General Lattice Theory. Birkhäuser, Basel, 1973.
[19] HALPERN J.-LÉVY A.: The Boolean prime ideal theorem does not imply the axiom of choice. In: Axiomatic Set Theory. Proc Symp. Pure Math. Amer. Math. Soc University of California, Los Angeles, July 10-August 5, 1967 (D. Scott, ed.), Proc Sympos. Pure Math. 13, Amer. Math. Soc, Providence, RI, 1971, pp. 83-134. MR 0284328
[20] HERRLICH H.: The axiom of choice holds if and only if maximal closed filters exist. MLQ Math. Log. Q. 49 (2003), 323-324. MR 1979139
[21] HOWARD P.-RUBIN J. E.: Consequences of the Axiom of Choice. Math. Surveys Monogr. 59, Amer. Math. Soc, Providence, RI, 1998. MR 1637107 | Zbl 0947.03001
[22] JOHNSTONE P. T.: Almost maximal ideals. Fund. Math. 123 (1984), 201-206. MR 0761975 | Zbl 0552.06004
[23] KATRIŇÁK T.: Pseudokomplementare Halbverbande. Mat. Casopis 18 (1968), 121-143. MR 0262123
[24] KATRIŇÁK T.: The structure of distributive p-algebras. Regularity and congruences. Algebra Universalis 3 (1973), 238-246. MR 0332598
[25] KATRIŇÁK T.: A new proof of the Glivenko-Frink Theorem. Bull. Soc Roy. Sci. Liege 50 (1981), 171. MR 0646688 | Zbl 0482.06001
[26] LARMEROVÁ J.-RACHŮNEK J.: Translations of distributive and modular ordered sets. Acta Univ. Palack. Olomuc. Fac. Rerum. Natur. Math. 27 (1988), 13-23. MR 1039879 | Zbl 0693.06003
[27] NIEDERLE J.: Boolean and distributive ordered sets: characterization and representation by sets. Order 12 (1995), 189-210. MR 1354802 | Zbl 0838.06004
[28] RHINEGHOST Y. T.: The Boolean prime ideal theorem holds if and only if maximal open filters exist. Cah. Topol. Geom. Differ. Categ. 43 (2002), 313-315. MR 1949661
[29] RUBIN H.-SCOTT D.: Some topological theorems equivalent to the Boolean prime ideal theorem. Bull. Amer. Math. Soc. 60 (1954), 389.
[30] SCOTT D.: The theorem on maximal ideals in lattices and the axiom of choice. Bull. Amer. Math. Soc. 60 (1954), 83.
[31] TARSKI A.: Prime ideal theorems for Boolean algebras and the axiom of choice. Bull. Amer. Math. Soc. 60 (1954), 390-391 (Abstract).
Partner of
EuDML logo