[1] BHANDARI D.-PAL N. R.: 
Some new information measures for fuzzy sets. Inform. Sci. 67 (1993), 204-228. 
MR 1195247 | 
Zbl 0763.94030 
[2] BOEKEE D. E.-LUBBE J. C. A.: 
The $R$-norm information measures. Inform. and Control 45 (1980), 136-155. 
MR 0584829 
[3] DELUCA A.-TERMINI S.: A definition of non-probabilistic entropy in the setting of fuzzy set theory. Inform. and Control 20 (1971), 301-312.
[4] HARVDA J. H.-CHARVAT F.: 
Quantification method of classification processes-concept of $\alpha$-entropy. Kybernetika 3 (1967), 30-35. 
MR 0209067 
[5] KAPUR J. N.: 
Measures of Fuzzy Information. Mathematical Sciences Trust Society, New Delhi. 
MR 1479891 
[6] KAPUR J. N.: 
Four families of measures of entropy. Indian J. Pure Appl. Math. 17 (1986), 429-449. 
MR 0840750 | 
Zbl 0589.62007 
[7] KAUFMAN A.: Fuzzy Subsets. Fundamental Theoretical Elements 3, Academic Press, New York, 1980.
[8] KULLBACK S.: 
Information Theory and Sufficiency. Willey and Sons, New Delhi, 1959. 
MR 0103557 
[9] KULLBACK S.-LEIBLER R. A.: 
On information and sufficiency. Ann. Math. Stat. 22 (1951), 79-86. 
MR 0039968 | 
Zbl 0042.38403 
[10] PAL N. R.-PAL S. K.: Object background segmentation using new definition of entropy. Proc. IEEE 136 (1989), 284-295.
[11] RENYI A.: 
On measures of entropy and information. In: Proc. 4th Berkeley Symp. Math. Stat. Probab. 1, 1961, pp. 547-561. 
MR 0132570 | 
Zbl 0106.33001 
[12] SHARMA B. D.-TANEJA I. J.: 
Entropy of type $(\alpha,\beta)$ and other generalized measures of information theory. Mathematika 22 (1995), 205-215. 
MR 0398670 
[13] SHARMA B. D.-MITTAL D. P.: 
New non-additive measures of entropy for discrete probability distributions. J. Math. Sci (Calcutta) 10 (1975), 28-40. 
MR 0539493 
[14] SHANNON C. E. : 
The mathematical theory of communication. Bell Syst. Tech. Journal 27 (1948), 423-467. 
MR 0026286 
[15] ZADEH L. A.: 
Fuzzy sets. Inform. and Control 8 (1966), 94-102. 
Zbl 0263.02028