Previous |  Up |  Next

Article

References:
[AT] ARTIN E.-TATE J.: Class Field Theory. W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0223335 | Zbl 0176.33504
[C] CARPENTER J.: Finiteness theorems for forms over global fields. Math. Z. 209 (1992), 153-166. MR 1143220 | Zbl 0724.11021
[CF] CASSELS J. W.-FROHLICH A.: Algebraic Number Theory. Academic Press, London-New York, 1967. MR 0215665 | Zbl 0153.07403
[CZ1] CZOGALA A.: On reciprocity equivalence of quadratic number fields. Acta Arith. 58 (1991), 365-387. MR 1111088 | Zbl 0733.11012
[CZ2] CZOGALA A.: Higher degree tame Hilbert-symbol equivalence of number fields. Abh. Math. Sem. Univ. Hamburg 69 (1999), 175-185. MR 1722930 | Zbl 0968.11038
[CS1] CZOGALA A.-SLADEK A.: Higher degree Hilbert-symbol equivalence of number fields. Tatra Mt. Math. Publ. 11 (1997), 77-88. MR 1475507 | Zbl 0978.11058
[CS2] CZOGALA A.-SLADEK A.: Higher degree Hilbert symbol equivalence of number fields II. J. Number Theory 72 (1998), 363-376. MR 1651698
[LW] LEEP D. B.-WADSWORTH A. R.: The Hasse norm theorem mod squares. J. Number Theory 42 (1992), 337-348. MR 1189511
[OM] O'MEARA O. T.: Introduction to Quadratic Forms. Springer Verlag, Berlin, 1973. Zbl 0259.10018
[PSCL] PERLIS R.-SZYMICZEK K.-CONNER P.-LITHERLAND R.: Matching Witts with global fields. In: Contemp. Math. 155, Amer. Math. Soc, Providence, RI, 1994, pp. 365-387. MR 1260721 | Zbl 0807.11024
[S] SLADEK A.: Hilbert symbol equivalence and Milnor $K$-functor. Acta Math. Inform. Univ. Ostraviensis 6 (1998), 183-189. MR 1822529
[W] WEIL A.: Basic Number Theory. Springer-Verlag, Berlin, 1974. MR 0427267 | Zbl 0326.12001
Partner of
EuDML logo