Previous |  Up |  Next

Article

Keywords:
Colombeau algebra; generalized sign; conservation law; entropy condition
Summary:
A generalized concept of sign is introduced in the context of Colombeau algebras. It extends the sign of the point-value in the case of sufficiently regular functions. This concept of generalized sign is then used to characterize the entropy condition for discontinuous solutions of scalar conservation laws.
References:
[1] Colombeau J.-F.: Multiplication of distributions. Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 251--268. DOI 10.1090/S0273-0979-1990-15919-1 | MR 1028141 | Zbl 0819.46026
[2] Colombeau J.-F.: Elementary introduction to new generalized functions. North-Holland Mathematics Studies 113, Notes on Pure Mathematics 103, North-Holland Publishing Co., Amsterdam, 1985. MR 0808961 | Zbl 0584.46024
[3] Dafermos C.M.: Hyperbolic conservation laws in continuum physics. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 325, Springer, Berlin, 2000. MR 1763936 | Zbl 1078.35001
[4] Danilov V.G., Omel'yanov G.A.: Calculation of the singularity dynamics for quadratic nonlinear hyperbolic equations. Example: the Hopf equation. Nonlinear Theory of Generalized Functions (Vienna, 1997), Chapman & Hall/CRC Res. Notes Math. 401, Chapman & Hall/CRC, Boca Raton, FL, 1999, 63--74. MR 1699862 | Zbl 0932.35144
[5] DiPerna R.J., Lions P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989), no. 3, 511--547. DOI 10.1007/BF01393835 | MR 1022305 | Zbl 0696.34049
[6] Lions P.-L., Perthame B., Tadmor E.: A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Amer. Math. Soc. 7 (1994), no. 1, 169--191. DOI 10.1090/S0894-0347-1994-1201239-3 | MR 1201239 | Zbl 0820.35094
[7] Lojasiewicz S.: Sur la valeur et la limite d'une distribution en un point. Studia Math. 16 (1957), 1--36. MR 0087905 | Zbl 0086.09405
[8] Nozari K., Afrouzi G.A.: Travelling wave solutions to some PDEs of mathematical physics. Int. J. Math. Math. Sci. (2004), no. 21--24, 1105--1120. MR 2085053 | Zbl 1069.35057
[9] Oberguggenberger M.: Multiplication of distributions and applications to partial differential equations. Pitman Research Notes in Mathematics Series 259, Longman Scientific & Technical, Harlow, 1992. MR 1187755 | Zbl 0818.46036
[10] Perthame B.: Kinetic formulation of conservation laws. Oxford Lecture Series in Mathematics and its Applications 21, Oxford University Press, Oxford, 2002. MR 2064166 | Zbl 1030.35002
[11] Rubio J.E.: The global control of shock waves. Nonlinear Theory of Generalized Functions (Vienna, 1997), Chapman & Hall/CRC Res. Notes Math. 401, Chapman & Hall/CRC, Boca Raton, FL, 1999, pp. 355--367. MR 1699875 | Zbl 0933.35135
[12] Rudin W.: Functional analysis. McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York, 1973. MR 0365062 | Zbl 0867.46001
[13] Schwartz L.: Théorie des distributions. Publications de l'Institut de Mathématique de l'Université de Strasbourg, No. IX--X, Nouvelle édition, entiérement corrigée, refondue et augmentée, Hermann, Paris, 1966. MR 0209834 | Zbl 0962.46025
[14] Shelkovich V.M.: New versions of the Colombeau algebras. Math. Nachr. 278 (2005), no. 11, 1318--1340. DOI 10.1002/mana.200310309 | MR 2163299 | Zbl 1115.46035
[15] Villarreal F.: Colombeau's theory and shock wave solutions for systems of PDEs. Electron. J. Differential Equations 2000, no. 21, 17 pp. MR 1744084 | Zbl 0966.46022
[16] Ziemer W.P.: Weakly differentiable functions. Sobolev spaces and functions of bounded variation. Graduate Texts in Mathematics 120, Springer, New York, 1989. DOI 10.1007/978-1-4612-1015-3_5 | MR 1014685 | Zbl 0692.46022
Partner of
EuDML logo