Previous |  Up |  Next

Article

Keywords:
finite von Neumann algebra; algebra of affiliated operators; semisimple ring; global dimension
Summary:
We prove that a finite von Neumann algebra ${\mathcal{A}}$ is semisimple if the algebra of affiliated operators ${\mathcal{U}}$ of ${\mathcal{A}}$ is semisimple. When ${\mathcal{A}}$ is not semisimple, we give the upper and lower bounds for the global dimensions of ${\mathcal{A}}$ and ${\mathcal{U}}.$ This last result requires the use of the Continuum Hypothesis.
References:
[1] P. Ara, D. Goldstein: A solution of the matrix problem for Rickart $C^*$-algebras. Math. Nachr. 164 (1993), 259–270. DOI 10.1002/mana.19931640118 | MR 1251467
[2] S. K. Berberian: The maximal ring of quotients of a finite von Neumann algebra. Rocky Mt. J. Math. 12 (1982), 149–164. DOI 10.1216/RMJ-1982-12-1-149 | MR 0649748 | Zbl 0484.46054
[3] S. K. Berberian: Baer $*$-rings. Die Grundlehren der mathematischen Wissenschaften, 195, Springer, 1972. MR 0429975
[4] J. Dixmier: Von Neumann Algebras. North Holland, Amsterdam, 1981. MR 0641217 | Zbl 0473.46040
[5] T. W. Hungerford: Algebra. Reprint of the 1974 original, Graduate Texts in Mathematics, 73, Springer, Berlin, 1980. MR 0600654 | Zbl 0442.00002
[6] C. U. Jensen: Les foncteurs dérivés de $\mathop {\varprojlim }\limits $ et leurs applications en théorie des modules. Lecture Notes in Mathematics, 254, Springer, Berlin, 1972. MR 0407091
[7] R. V. Kadison, J. R. Ringrose: Fundamentals of the Theory of Operator Algebras, volume 1: Elementary Theory. Pure and Applied Mathematics Series, 100, Academic Press, London, 1983. MR 0719020
[8] R. V. Kadison, J. R. Ringrose: Fundamentals of the Theory of Operator Algebras, volume 2: Advanced Theory. Pure and Applied Mathematics Series, 100, Academic Press, London, 1986. MR 0859186
[9] T. Y. Lam: Lectures on Modules and Rings. Graduate Texts in Mathematics, 189, Springer, New York, 1999. MR 1653294 | Zbl 0911.16001
[10] W. Lück: $L^2$-invariants: Theory and Applications to Geometry and K-theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Folge 3, 44, Springer, Berlin, 2002. MR 1926649 | Zbl 1069.57017
[11] J. Rosenberg: Algebraic $K$-theory and Its Applications. Graduate Texts in Mathematics, 147, Springer, New York, 1994. MR 1282290 | Zbl 0801.19001
[12] L. Vaš: Torsion theories for finite von Neumann algebras. Commun. Alg. 33 (2005), 663–688. DOI 10.1081/AGB-200049871 | MR 2128403 | Zbl 1108.46044
[13] L. Vaš: Dimension and torsion theories for a class of Baer *-Rings. J. Alg. 289 (2005), 614–639. DOI 10.1016/j.jalgebra.2005.02.018 | MR 2142388
Partner of
EuDML logo