[1] V. Beneš, K. Bodlák, D. Hlubinka:
Stereology of extremes; bivariate models and computation. Methodol. Comput. Appl. Probab 5 (2003), no. 3, 289–308.
DOI 10.1023/A:1026283103180 |
MR 2016768
[3] H. Drees, R.-D. Reiss:
Tail behavior in Wicksell’s corpuscle problem. Probability Theory and Applications, J. Galambos, J. Kátai (eds.), Kluwer, Dordrecht, 1992, pp. 205–220.
MR 1211909
[4] P. Embrechts, C. Klüppelberg, T. Mikosh:
Modelling Extremal Events. Springer, Berlin, 1997.
MR 1458613
[5] L. de Haan:
On Regular Variation and Its Application to the Weak Convergence of Sample Extremes. Math. Centre Tracts 32, Mathematisch Centrum, Amsterdam, 1970.
MR 0286156 |
Zbl 0226.60039
[6] B. M. Hill:
A simple general approach to inference about the tail of a distribution. Ann. Stat. (1975), 1163–1174.
MR 0378204 |
Zbl 0323.62033
[8] D. Hlubinka:
Extremes of spheroid shape factor based on two dimensional profiles. (2003) (to appear).
MR 2021590
[10] R.-D. Reiss, M. Thomas:
Statistical Analysis of Extreme Values. From Insurance, Finance, Hydrology and Other Fields. Birkhäuser, Basel, 2001.
MR 1819648
[12] R. Takahashi, M. Sibuya:
The maximum size of the planar sections of random spheres and its application to metalurgy. Ann. Inst. Stat. Math. 48 (1996), no. 1, 127–144.
DOI 10.1007/BF00049294 |
MR 1392521
[15] I. Weissman:
Estimation of parameters and large quantiles based on the $k$ largest observations. J. Am. Stat. Assoc. 73 (1978), no. 364, 812–815.
MR 0521329 |
Zbl 0397.62034
[16] S. D. Wicksell: The corpuscle problem I. Biometrika 17 (1925), 84–99.
[17] S. D. Wicksell: The corpuscle problem II. Biometrika 18 (1926), 152–172.