Previous |  Up |  Next

Article

Keywords:
rank 1 convexity; relaxation; stored energies
Summary:
Let $f$ be a rotationally invariant (with respect to the proper orthogonal group) function defined on the set $\text{M}^{2\times 2}$ of all $2$ by $2$ matrices. Based on conditions for the rank 1 convexity of $f$ in terms of signed invariants of $\mathbb{A}$ (to be defined below), an iterative procedure is given for calculating the rank 1 convex hull of a rotationally invariant function. A special case in which the procedure terminates after the second step is determined and examples of the actual calculations are given.
References:
[1] Ball, J. M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977), 337–403. DOI 10.1007/BF00279992 | MR 0475169 | Zbl 0368.73040
[2] Buttazzo, G., Dacorogna, B., Gangbo, W.: On the envelopes of functions depending on singular values of matrices. Bolletino U. M. I. 7 (1994), 17–35. MR 1274317
[3] Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, Berlin, 1990. MR 2361288
[4] Kohn, R. V.: The relaxation of a double-well energy. Continuum Mech. Thermodyn. 3 (1991), 3–236. DOI 10.1007/BF01135336 | MR 1122017 | Zbl 0825.73029
[5] Kohn, R. V., Strang, G.: Optimal design and relaxation of variational problems, I, II, III. Comm. Pure Appl. Math. 39 (1986), 113–137, 139–182, 353–377. DOI 10.1002/cpa.3160390305 | MR 0820342
[6] Morrey, Jr, C. B.: Multiple Integrals in the Calculus of Variations. Springer, New York, 1966. MR 0202511
[7] Rosakis, P.: Characterizat on of convex isotropic functions. J. Elasticity 49 (1997), 257–267. DOI 10.1023/A:1007468902439 | MR 1633494
[8] Roubíček, T.: Relaxation in optimization theory and variational calculus. W. de Gruyter, Berlin, 1997. MR 1458067
[9] Šilhavý, M.: The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin, 1997. MR 1423807
[10] Šilhavý, M.: Convexity conditions for rotationally invariant functions in two dimensions. Applied Nonlinear Analysis, A. Sequeira et al. (eds.), Kluwer Academic, New York, 1999, pp. 513–530. MR 1727470
[11] Šilhavý, M.: Rank 1 convex hulls of rotationally invariant functions. In preparation.
Partner of
EuDML logo