Previous |  Up |  Next

Article

Title: A note on the $a$-Browder’s and $a$-Weyl’s theorems (English)
Author: Amouch, M.
Author: Zguitti, H.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 133
Issue: 2
Year: 2008
Pages: 157-166
Summary lang: English
.
Category: math
.
Summary: Let $T$ be a Banach space operator. In this paper we characterize $a$-Browder’s theorem for $T$ by the localized single valued extension property. Also, we characterize $a$-Weyl’s theorem under the condition $E^a(T)=\pi ^a(T),$ where $E^a(T)$ is the set of all eigenvalues of $T$ which are isolated in the approximate point spectrum and $\pi ^a(T)$ is the set of all left poles of $T.$ Some applications are also given. (English)
Keyword: B-Fredholm operator
Keyword: Weyl’s theorem
Keyword: Browder’s thoerem
Keyword: operator of Kato type
Keyword: single-valued extension property
MSC: 47A10
MSC: 47A11
MSC: 47A53
idZBL: Zbl 1199.47067
idMR: MR2428311
DOI: 10.21136/MB.2008.134059
.
Date available: 2009-09-24T22:35:43Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134059
.
Reference: [1] P. Aiena: Fredholm Theory and Local Spectral Theory, with Applications to Multipliers.Kluwer Academic Publishers, 2004. MR 2070395
Reference: [2] P. Aiena, O. Monsalve: Operators which do not have the single valued extension property.J. Math. Anal. Appl. 250 (2000), 435–448. MR 1786074, 10.1006/jmaa.2000.6966
Reference: [3] M. Amouch: Weyl type theorems for operators satisfying the single-valued extension property.J. Math. Anal. Appl. 326 (2007), 1476–1484. Zbl 1117.47007, MR 2280999, 10.1016/j.jmaa.2006.03.085
Reference: [4] M. Amouch: Generalized $a$-Weyl’s theorem and the single-valued extension property.Extracta. Math. 21 (2006), 51–65. Zbl 1123.47005, MR 2258341
Reference: [5] M. Amouch, H. Zguitti: On the equivalence of Browder’s and generalized Browder’s theorem.Glasgow Math. J. 48 (2006), 179–185. MR 2224938, 10.1017/S0017089505002971
Reference: [6] M. Berkani, N. Castro, S. V. Djordjevic: Single valued extension property and generalized Weyl’s theorem.Math. Bohem. 131 (2006), 29–38. MR 2211001
Reference: [7] M. Berkani, A. Arroud: Generalized Weyl’s theorem and hyponormal operators.J. Aust. Math. Soc. 76 (2004), 291–302. MR 2041251, 10.1017/S144678870000896X
Reference: [8] M. Berkani, J. J. Koliha: Weyl type theorems for bounded linear operators.Acta Sci. Math. (Szeged) 69 (2003), 359–376. MR 1991673
Reference: [9] M. Berkani, M. Sarih: On semi B-Fredholm operators.Glasgow Math. J. 43 (2001), 457–465. MR 1878588
Reference: [10] S. V. Djordjević, Y. M. Han: Browder’s theorems and spectral continuity.Glasgow Math. J. 42 (2000), 479–486. MR 1793814, 10.1017/S0017089500030147
Reference: [11] B. P. Duggal: Hereditarily normaloid operators.Extracta Math. 20 (2005), 203–217. Zbl 1160.47301, MR 2195202
Reference: [12] J. K. Finch: The single valued extension property on a Banach space.Pacific J. Math. 58 (1975), 61–69. Zbl 0315.47002, MR 0374985, 10.2140/pjm.1975.58.61
Reference: [13] S. Grabiner: Uniform ascent and descent of bounded operators.J. Math. Soc. Japan 34 (1982), 317–337. Zbl 0477.47013, MR 0651274, 10.2969/jmsj/03420317
Reference: [14] Y. M. Han, W. Y. Lee: Weyl’s theorem holds for algebraically hyponormal operators.Proc. Amer. Math. Soc. 128 (2000), 2291–2296. MR 1756089, 10.1090/S0002-9939-00-05741-5
Reference: [15] Y. M. Han, S. V. Djordjević: A note on $a$-Weyl’s theorem.J. Math. Anal. Appl. 260 (2001), 200–213. MR 1843976, 10.1006/jmaa.2001.7448
Reference: [16] J. J. Koliha: Isolated spectral points.Proc. Amer. Math. Soc. 124 (1996), 3417–3424. Zbl 0864.46028, MR 1342031, 10.1090/S0002-9939-96-03449-1
Reference: [17] K. B. Laursen: Operators with finite ascent.Pacific. Math. J. 152 (1992), 323–336. Zbl 0783.47028, MR 1141799, 10.2140/pjm.1992.152.323
Reference: [18] K. B. Laursen, M. M. Neumann: An Introduction to Local Spectral Theory.Clarendon, Oxford, 2000. MR 1747914
Reference: [19] D. C. Lay: Spectral analysis using ascent, descent, nullity and defect.Math. Ann. 184 (1970), 197–214. Zbl 0177.17102, MR 0259644, 10.1007/BF01351564
Reference: [20] M. Mbekhta: Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux.Glasgow Math. J. 29 (1987), 159–175. Zbl 0657.47038, MR 0901662, 10.1017/S0017089500006807
Reference: [21] M. Mbekhta: Résolvant généralisé et théorie spectrale.J. Operator Theory 21 (1989), 69–105. Zbl 0694.47002, MR 1002122
Reference: [22] M. Mbekhta, V. Müler: On the axiomatic theory of the spectrum II.Studia Math. 119 (1996), 129–147. MR 1391472, 10.4064/sm-119-2-129-147
Reference: [23] M. Oudghiri: Weyl’s and Browder’s theorem for operators satisfying the SVEP.Studia Math. 163 (2004), 85–101. MR 2047466, 10.4064/sm163-1-5
Reference: [24] V. Rakočević: On the essential approximate point spectrum II.Mat. Vesnik 36 (1984), 89–97. MR 0880647
Reference: [25] V. Rakočević: Approximate point spectrum and commuting compact perturbations.Glasgow Math. J. 28 (1986), 193–198. MR 0848425, 10.1017/S0017089500006509
Reference: [26] V. Rakočević: Operators obeying $a$-Weyl’s theorem.Rev. Roumaine Math. Pures Appl. 34 (1989), 915–919. MR 1030982
Reference: [27] H. Weyl: Über beschränkte quadratische Formen, deren Differenz vollstetig ist.Rend. Circ. Mat. Palermo 27 (1909), 373–392. 10.1007/BF03019655
Reference: [28] H. Zguitti: A note on generalized Weyl’s theorem.J. Math. Anal. Appl. 324 (2006), 992–1005. Zbl 1101.47002, MR 2201769
.

Files

Files Size Format View
MathBohem_133-2008-2_5.pdf 263.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo