[1] D. Bonheure, C. De Coster:
Forced singular oscillators and the method of lower and upper functions. Topol. Methods Nonlinear Anal. 22 (2003), 297–317.
DOI 10.12775/TMNA.2003.041 |
MR 2036378
[3] A. Cabada, R. Pouso:
Existence result for the problem $\left(\phi (u^{\prime })\right)^{\prime }=f(t,u,u^{\prime })$ with periodic and Neumann boundary conditions. Nonlinear Anal., Theory Methods Appl. 30 (1997), 1733–1742.
MR 1490088
[4] M. del Pino, R. Manásevich, A. Montero:
$T$-periodic solutions for some second order differential equations with singularities. Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 231–243.
MR 1159183
[5] M. del Pino, R. Manásevich, A. Murúa:
Existence and multiplicity of solutions with prescribed period for a second order quasilinear O.D.E. Nonlinear Anal., Theory Methods Appl. 18 (1992), 79–92.
DOI 10.1016/0362-546X(92)90048-J |
MR 1138643
[6] L. Derwidué: Systèmes différentiels non linéaires ayant des solutions périodiques. Acad. R. Belgique, Bull. Cl. Sci. 49 (1963), 11–32.
[7] P. Drábek:
Solvability and Bifurcation of Nonlinear Equations. Research Notes in Math. Vol. 264, Pitman, Boston, 1992.
MR 1175397
[8] R. Faure:
Solutions périodiques d’equations différentielles et mèthode de Leray-Schauder (Cas des vibrations forceés). Ann. Inst. Fourier (Grenoble) 14 (1964), 195–204.
DOI 10.5802/aif.170 |
MR 0166444
[9] A. Fonda:
Periodic solution of scalar second order differential equations with a singularity. Acad R. Belgique, Mém. Cl. Sci. 4 (1993), 1–39.
MR 1259048
[10] N. Forbat, A. Huaux:
Détermination approachée et stabilité locale de la solution périodique d’une equation différentielle non linéaire. Mém. Public. Soc. Sci. Arts Letters Hainaut 76 (1962), 3–13.
MR 0149009
[11] W. G. Ge, J. Mawhin:
Positive solutions to boundary value problems for second order ordinary differential equations with singular nonlinearities. Result. Math. 34 (1998), 108–119.
DOI 10.1007/BF03322042 |
MR 1635588
[12] P. Habets, L. Sanchez:
Periodic solutions of some Liénard equations with singularities. Proc. Amer. Math. Soc. 109 (1990), 1035–1044.
MR 1009991
[13] A. Huaux:
Sur l’existence d’une solution périodique de l’equation différentielle non linéaire $u^{\prime \prime }+0.2\,u^{\prime }+u/(1-u)=0.5\cos \omega t$. Acad. R. Belgique, Bull. Cl. Sci. 48 (1962), 494–504.
MR 0142838
[14] P. Jebelean, J. Mawhin:
Periodic solutions of singular nonlinear perturbations of the ordinary $p$-Laplacian. Adv. Nonlinear Stud. 2 (2002), 299–312.
MR 1918967
[15] P. Jebelean, J. Mawhin:
Periodic solutions of forced dissipative $p$-Liénard equations with singularities. Vietnam J. Math. 32 (2004), 97–103.
MR 2120634
[16] D. Q. Jiang, J. Y. Wang:
A generalized periodic boundary value problem for the one-dimensional $p$-Laplacian. Ann. Polon. Math. 65 (1997), 265–270.
DOI 10.4064/ap-65-3-265-270 |
MR 1441181
[19] J. Mawhin:
Topological degree and boundary value problems for nonlinear differential equations. Topological Methods for Ordinary Differential Equations, M. Furi, P. Zecca (eds.), Lecture Notes in Mathematics, Vol. 1537, Springer, Berlin, 1993, pp. 74–142.
MR 1226930 |
Zbl 0798.34025
[20] R. Manásevich, J. Mawhin:
Periodic solutions for nonlinear systems with p-Laplacian-like operators. J. Differential Equations 145 (1998), 367–393.
DOI 10.1006/jdeq.1998.3425 |
MR 1621038
[21] J. Mawhin:
Periodic Solutions of Systems with $p$-Laplacian-like Operators. Nonlinear Analysis and its Applications to Differential Equations, M. R. Grossinho, M. Ramos, C. Rebelo, L. Sanchez (eds.), Progress in Nonlinear Differerential Equations and their Applications, Vol. 43, Birkhäuser, Boston, 2001, pp. 37–63.
MR 1800613 |
Zbl 1016.34042
[22] P. Omari, W. Y. Ye:
Necessary and sufficient conditions for the existence of periodic solutions of second order ordinary differential equations with singular nonlinearities. Differ. Integral Equ. 8 (1995), 1843–1858.
MR 1347985 |
Zbl 0831.34048
[23] I. Rachůnková, M. Tvrdý:
Second-order periodic problem with $\phi $-Laplacian and impulses. Nonlinear Anal., Theory Methods Appl. 63 (2005), e257–e266.
DOI 10.1016/j.na.2004.09.017
[24] I. Rachůnková, M. Tvrdý:
Periodic problems with $\phi $-Laplacian involving non-ordered lower and upper functions. Fixed Point Theory 6 (2005), 99–112.
MR 2133109
[25] I. Rachůnková, M. Tvrdý, I. Vrkoč:
Existence of nonnegative and nonpositive nolutions for second order periodic boundary value problems. J. Differential Equations 176 (2001), 445–469.
DOI 10.1006/jdeq.2000.3995 |
MR 1866282
[26] I. Rachůnková, M. Tvrdý, I. Vrkoč:
Resonance and multiplicity in periodic BVPs with singularity. Math. Bohem. 128 (2003), 45–70.
MR 1973424
[27] S. Staněk:
Periodic boundary value problem for second order functional differential equations. Math. Notes (Miskolc) 1 (2000), 63–81.
DOI 10.18514/MMN.2000.19 |
MR 1793262
[32] M. R. Zhang:
A relationship between the periodic and the Dirichlet BVPs of singular differential equations. Proc. Roy. Soc. Edinburgh Sect. A 128A (1998), 1099–1114.
MR 1642144 |
Zbl 0918.34025