Previous |  Up |  Next

Article

Title: Variable exponent Sobolev spaces with zero boundary values (English)
Author: Harjulehto, Petteri
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 132
Issue: 2
Year: 2007
Pages: 125-136
Summary lang: English
.
Category: math
.
Summary: We study different definitions of the first order variable exponent Sobolev space with zero boundary values in an open subset of ${\mathbb{R}^n}$. (English)
Keyword: variable exponent
Keyword: Sobolev space
Keyword: zero boundary value
MSC: 46E35
idZBL: Zbl 1174.46322
idMR: MR2338802
DOI: 10.21136/MB.2007.134186
.
Date available: 2009-09-24T22:30:17Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134186
.
Reference: [1] E. Acerbi, G. Mingione: Regularity results for a class of functionals with non-standard growth.Arch. Ration. Mech. Anal. 156 (2001), 121–140. MR 1814973, 10.1007/s002050100117
Reference: [2] D. R. Adams, L. I. Hedberg: Function Spaces and Potential Theory.Springer, Berlin, 1996. MR 1411441
Reference: [3] D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer: The maximal operator on variable $L^p$ spaces.Ann. Acad. Sci. Fenn. 28 (2003), 223–238. MR 1976842
Reference: [4] L. Diening: Maximal operator on generalized Lebesgue spaces ${L}^{p(\cdot )}$.Math. Inequal. Appl. 7 (2004), 245–254. MR 2057643
Reference: [5] L. Diening, M. Růžička: Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot )}$ and problems related to fluid dynamics.J. Reine Ang. Math. 563 (2003), 197–220. MR 2009242
Reference: [6] D. E. Edmunds, J. Rákosník: Density of smooth functions in $W^{k,p(x)}(\Omega )$.Proc. Roy. Soc. London Ser. A 437 (1992), 229–236. MR 1177754, 10.1098/rspa.1992.0059
Reference: [7] M. Eleutera: Hölder continuity results for a class of functionals with non standard growth.Boll. Unione Mat. Ital. 7-B (2004), 129–157. MR 2044264
Reference: [8] X. Fan, D. Zhao: On the spaces ${L}^{p(x)}(\Omega )$ and ${W}^{m,p(x)}(\Omega )$.J. Math. Anal. Appl. 263 (2001), 424–446. MR 1866056
Reference: [9] P. Harjulehto, P. Hästö: Lebesgue points in variable exponent spaces.Ann. Acad. Sci. Fenn. Math. 29 (2004), 295–306. MR 2097234
Reference: [10] P. Harjulehto, P. Hästö, M. Koskenoja, S. Varonen: Sobolev capacity on the space $W^{1,p(\cdot )}({\mathbb{R}^n})$.J. Funct. Spaces Appl. 1 (2003), 17–33. MR 2011498
Reference: [11] P. Harjulehto, P. Hästö, M. Koskenoja, S. Varonen: The Dirichlet energy integral and variable exponent Sobolev spaces with zero boundary values.Potential Anal. 25 (2006), 205–222. MR 2255345, 10.1007/s11118-006-9023-3
Reference: [12] P. Hästö: On the density of continuous functions in variable exponent Sobolev space.Rev. Mat. Iberoamericana 23 (2007), 215–237. Zbl 1144.46031, MR 2351132
Reference: [13] P. Hästö: Counter examples of regularity in variable exponent Sobolev spaces.The $p$-Harmonic Equation and Recent Advances in Analysis (Manhattan, KS, 2004), 133–143, Contemp. Math. 367, Amer. Math. Soc., Providence, RI, 2005. Zbl 1084.46025, MR 2126704
Reference: [14] T. Kilpeläinen: A remark on the uniqueness of quasicontinuous functions.Ann. Acad. Sci. Fenn. Math. 23 (1998), 261–262.
Reference: [15] T. Kilpeläinen, J. Kinnunen, O. Martio: Sobolev spaces with zero boundary values on metric spaces.Potential Anal. 12 (2000), 233–247. MR 1752853, 10.1023/A:1008601220456
Reference: [16] V. Kokilasvili, S. Samko: Maximal and fractional operators in weighted $L^{p(x)}$ spaces.Rev. Mat. Iberoamericana 20 (2004), 493–515. MR 2073129
Reference: [17] O. Kováčik, J. Rákosník: On spaces $L^{p(x)}$ and $W^{1,p(x)}$.Czech. Math. J. 41 (1991), 592–618.
Reference: [18] A. K. Lerner: Some remarks on the Hardy-Littlewood maximal function on variable $L^p$ spaces.Math. Z. 251 (2005), 509–521. MR 2190341, 10.1007/s00209-005-0818-5
Reference: [19] E. McShane: Extension of range of functions.Bull. Amer. Math. Soc. 40 (1934), 837–842. Zbl 0010.34606, MR 1562984, 10.1090/S0002-9904-1934-05978-0
Reference: [20] J. Musielak: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics 1034, Springer, Berlin, 1983. Zbl 0557.46020, MR 0724434
Reference: [21] A. Nekvinda: Hardy-Littlewood maximal operator on $L^{p(x)}({\mathbb{R}^n})$.Math. Inequal. Appl. 7 (2004), 255–266. MR 2057644
Reference: [22] W. Orlicz: Über konjugierte Exponentenfolgen.Studia Math. 3 (1931), 200–212. Zbl 0003.25203, MR 0180849, 10.4064/sm-3-1-200-211
Reference: [23] L. Pick, M. Růžička: An example of a space ${L}^{p(x)}$ on which the Hardy-Littlewood maximal operator is not bounded.Expo. Math. 19 (2001), 369–371. MR 1876258, 10.1016/S0723-0869(01)80023-2
Reference: [24] M. Růžička: Electrorheological Fluids: Modeling and Mathematical Theory.Lecture Notes in Mathematics 1748, Springer, Berlin, 2000. MR 1810360
Reference: [25] S. Samko: Convolution and potential type operators in $L^{p(x)}({\mathbb{R}^n})$.Integr. Transform. and Special Funct. 7 (1998), 261–284. MR 1775832, 10.1080/10652469808819204
Reference: [26] S. Samko: Denseness of $C^\infty _0({{\mathbb{R}^n}})$ in the generalized Sobolev spaces $W^{m,p(x)}({{\mathbb{R}^n}})$.Direct and inverse problems of mathematical physics (Newark, DE, 1997), Int. Soc. Anal. Appl. Comput. 5, Kluwer Acad. Publ., Dordrecht, 2000, pp. 333–342. MR 1766309
Reference: [27] I. Sharapudinov: On the topology of the space $L^{p(t)}([0;1])$.Matem. Zametki 26 (1979), 613–632. MR 0552723
Reference: [28] D. Swanson, W. P. Ziemer: Sobolev functions whose inner trace at the boundary is zero.Ark. Mat. 37 (1999), 373–380. MR 1714762, 10.1007/BF02412221
Reference: [29] V. V. Zhikov: Averaging of functions of the calculus of variations and elasticity theory.Math. USSR-Izv. 29 (1987), 33–66. MR 0864171, 10.1070/IM1987v029n01ABEH000958
.

Files

Files Size Format View
MathBohem_132-2007-2_2.pdf 352.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo