Previous |  Up |  Next

Article

Keywords:
superconvergence; method of lines; mixed finite elements; a posteriori error estimation; adaptive time-stepping; adaptive refinement
Summary:
We will investigate the possibility to use superconvergence results for the mixed finite element discretizations of some time-dependent partial differential equations in the construction of a posteriori error estimators. Since essentially the same approach can be followed in two space dimensions, we will, for simplicity, consider a model problem in one space dimension.
References:
[1] S. Adjerid, J.E. Flaherty, Y.J. Wang: A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems. Numer. Math. 65 (1993), 1–21. DOI 10.1007/BF01385737 | MR 1217436
[2] M. Berzins: Global error estimation in the method of lines for parabolic equations. SIAM J. Sci. Stat. Comput. 9(4) (1988), 687–703. DOI 10.1137/0909045 | MR 0945932 | Zbl 0659.65081
[3] J.H. Brandts: Superconvergence and a posteriori error estimation for triangular mixed finite elements. Numer. Math. 68(3) (1994), 311–324. DOI 10.1007/s002110050064 | MR 1313147 | Zbl 0823.65103
[4] J.H. Brandts: Superconvergence for triangular order $k=1$ Raviart-Thomas mixed finite elements and for triangular standard quadratic finite element methods. Appl. Numer. Math. (1996), to appear (accepted). MR 1755693 | Zbl 0948.65120
[5] J.H. Brandts: Superconvergence of mixed finite element semi-discretizations of two time-dependent problems. Appl. Math. 44(1) (1999), 43–53. DOI 10.1023/A:1022220219953 | MR 1666846 | Zbl 1059.65518
[6] J. Douglas, J.E. Roberts: Global estimates for mixed methods for second order elliptic problems. Math. Comp. 44(169) (1985), 39–52. DOI 10.1090/S0025-5718-1985-0771029-9 | MR 0771029
[7] R. Durán: Superconvergence for rectangular mixed finite elements. Numer. Math. 58 (1990), 2–15. DOI 10.1007/BF01385626 | MR 1075159
[8] K. Eriksson, C. Johnson: Adaptive finite element methods for parabolic problems I: A linear model problem. SIAM J. Numer. Anal. 28 (1991), 43–77. DOI 10.1137/0728003 | MR 1083324
[9] K. Eriksson, C. Johnson: Adaptive finite element methods for parabolic problems II: Optimal error estimates in $L_{\infty }L_2$ and $L_{\infty }L_{\infty }$. SIAM J. Numer. Anal. 32 (1995), 706–740. DOI 10.1137/0732033 | MR 1335652
[10] K. Eriksson, C. Johnson: Adaptive finite element methods for parabolic problems III: Time steps variable in space. Manuscript.
[11] K. Eriksson, C. Johnson: Adaptive finite element methods for parabolic problems IV: Nonlinear problems. SIAM J. Numer. Anal. 32 (1995), 1729–1749. DOI 10.1137/0732078 | MR 1360457
[12] K. Eriksson, C. Johnson: Adaptive finite element methods for parabolic problems V: Long-time integration. SIAM J. Numer. Anal. 32 (1995), 1750–1763. DOI 10.1137/0732079 | MR 1360458
[13] K. Eriksson, C. Johnson, S. Larsson: Adaptive finite element methods for parabolic problems VI: Analytic semigroups. SIAM J. Numer. Anal. 35(4) (1998), 1315–1325. DOI 10.1137/S0036142996310216 | MR 1620144
[14] D. Estep: A posteriori error bounds and global error control for approximation of ordinary differential equations. SIAM J. Numer. Anal. 32(1) (1995), 1–48. DOI 10.1137/0732001 | MR 1313704 | Zbl 0820.65052
[15] C. Johnson, Y. Nie, V. Thomée: An a posteriori error estimate and adaptive time step control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27(2) (1990), 277–291. DOI 10.1137/0727019 | MR 1043607
[16] M. Křížek, P. Neittaanmäki, R. Stenberg (eds): Finite element methods: superconvergence, post-processing and a posteriori estimates. Proc. Conf. Univ. of Jyväskylä, 1996, Lecture Notes in Pure and Applied Mathematics volume 196, Marcel Dekker, New York, 1998. MR 1602809
[17] J. Lawson, M. Berzins, P.M. Dew: Balancing space and time errors in the method of lines for parabolic equations. SIAM J. Sci. Stat. Comput. 12(3) (1991), 573–594. DOI 10.1137/0912031 | MR 1093207
[18] P. Monk: A comparison of three mixed methods for the time-dependent Maxwell’s equations. SIAM J. Sci. Stat. Comput. 13(5) (1992), 1097–1122. DOI 10.1137/0913064 | MR 1177800 | Zbl 0762.65081
[19] P. Monk: An analysis of Nédélec’s method for the spatial discretization of Maxwell’s equations. J. Comp. Appl. Math. 47 (1993), 101–121. DOI 10.1016/0377-0427(93)90093-Q | MR 1226366 | Zbl 0784.65091
[20] A.K. Pani: An $H^1$-Galerkin mixed finite element method for parabolic partial differential equations. SIAM J. Numer. Anal. 35(2) (1998), 712–727. DOI 10.1137/S0036142995280808 | MR 1618886 | Zbl 1096.76516
[21] P.A. Raviart, J.M. Thomas: A mixed finite element method for second order elliptic problems. Lecture Notes in Mathematics 606, 1977, pp. 292–315. MR 0483555
[22] A.H. Schatz, V. Thomeé, W.L. Wendland (eds): Mathematical Theory of Finite and Boundary Element Methods. Birkhäuser Verlag, Basel, 1990. MR 1116555
[23] V. Thomée: Galerkin Finite Element Methods for Parabolic Problems. Lecture Notes in Mathematics 1054, Springer Verlag, New York, 1998. MR 0744045
Partner of
EuDML logo