[1] A. Einstein: Eine neue Bestimmung der Moleküldimensionen. Ann. Physik 19 (1906), 289–306, errata 34 (1911), 591–592.
[2] N. C. Gay: 
The motion of rigid particles embedded in a viscous fluid during pure shear deformation of the fluid. Tectonophysics 5 (1968), 81–88. 
DOI 10.1016/0040-1951(68)90082-6[3] S. K. Ghosh, H. Ramberg: 
Reorientation of inclusions by combination of pure shear and simple shear. Tectonophysics 34 (1976), 1–70. 
DOI 10.1016/0040-1951(76)90176-1[4] I. S. Gradshtein, I. M. Ryzhik: 
Table of Integrals, Series, and Products. 5th ed. Boston, Academic Press 1994. 
MR 1243179[5] G. B. Jeffery: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. Roy. Soc. London Ser. A 102 (1922), 161–179.
[6] J. Ježek: 
Software for modeling the motion of rigid triaxial particles in viscous flow. Computers and Geosciences 20 (1994), 409–424. 
DOI 10.1016/0098-3004(94)90049-3[7] J. Ježek, S. Saic, K. Segeth, K. Schulmann: 
Three-dimensional hydrodynamical modelling of viscous flow around a rotating ellipsoidal inclusion. Computers and Geosciences 25 (1999), 547–558. 
DOI 10.1016/S0098-3004(98)00165-4[8] J. Ježek, K. Schulmann, K. Segeth: 
Fabric evolution of rigid inclusions during mixed coaxial and simple shear flows. Tectonophysics 257 (1996), 203–221. 
DOI 10.1016/0040-1951(95)00133-6[9] T. Masuda, S. Mochizuki: 
Development of snowball structure: numerical simulation of inclusion trails during synkinematic porphyroblast growth in metamorphic rocks. Tectonophysics 170 (1989), 141–150. 
DOI 10.1016/0040-1951(89)90108-X[10] W. H. Press et al.: 
Numerical Recipes. The Art of Scientific Computing. Cambridge, Cambridge University Press 1986. 
MR 0833288 | 
Zbl 1132.65001[11] L. J. Reed, E. Tryggvason: 
Preferred orientations of rigid particles in a viscous matrix deformed by pure shear and simple shear. Tectonophysics 24 (1974), 85–98. 
DOI 10.1016/0040-1951(74)90131-0[12] S. Wolfram: 
Mathematica. A System for Doing Mathematics by Computer. Reading, MA, Addison-Wesley 1993. 
Zbl 0925.65002