[1] L. Caffarelli, R. Kohn, L. Nirenberg: 
Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35 (1982), 771–831. 
DOI 10.1002/cpa.3160350604 | 
MR 0673830[2] D.  Chae, H. J. Choe: 
Regularity of solutions to the Navier-Stokes equation. Electron. J.  Differential Equations 5 (1999), 1–7. 
MR 1673067[3] C. L.  Berselli, G. P. Galdi: 
Regularity criterion involving the pressure for weak solutions to the Navier-Stokes equations. Dipartimento di Matematica Applicata, Università di Pisa, Preprint No.  2001/10. 
MR 1920038[4] L.  Escauriaza, G. Seregin, V. Šverák: 
On backward uniqueness for parabolic equations. Zap. Nauch. Seminarov POMI 288 (2002), 100–103. 
MR 1923546[5] E. Hopf: 
Über die Anfangswertaufgabe für die Hydrodynamischen Grundgleichungen. Math. Nachrichten 4 (1951), 213–231. 
MR 0050423[6] K. K.  Kiselev, O. A. Ladyzhenskaya: 
On existence and uniqueness of solutions of the solutions to the Navier-Stokes equations. Izv. Akad. Nauk SSSR 21 (1957), 655–680. (Russian) 
MR 0100448[8] J.  Neustupa, J. Nečas: 
New conditions for local regularity of a suitable weak solution to the Navier-Stokes equations. J.  Math. Fluid Mech. 4 (2002), 237–256. 
DOI 10.1007/s00021-002-8544-9 | 
MR 1932862[9] J.  Neustupa, A. Novotný, P. Penel: A remark to interior regularity of a suitable weak solution to the Navier-Stokes equations. CIM Preprint No.  25 (1999).
[10] J.  Neustupa, P. Penel: 
Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D  Navier-Stokes Equations. In: Mathematical Fluid Mechanics (Recent Results and Open Problems), J. Neustupa, P. Penel (eds.), Birkhäuser-Verlag, Basel, 2001, pp. 237–268. 
MR 1865056[11] L.  Nirenberg: 
On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, Sci. Fis. Mat., III. Ser. 123 13 (1959), 115–162. 
MR 0109940 | 
Zbl 0088.07601[12] M.  Pokorný: 
On the result of He concerning the smoothness of solutions to the Navier-Stokes equations. Electron. J. Differential Equations (2003), 1–8. 
MR 1958046 | 
Zbl 1014.35073[15] G.  Seregin, V. Šverák: 
Navier-Stokes and backward uniqueness for the heat equation. IMA Preprint No.  1852 (2002). 
MR 1972005[16] J.  Serrin: The initial boundary value problem for the Navier-Stokes equations. In: Nonlinear Problems, R. E. Langer (ed.), University of Wisconsin Press, 1963.
[17] E. M.  Stein: 
Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970. 
MR 0290095 | 
Zbl 0207.13501[18] Y. Zhou: A new regularity result for the Navier-Stokes equations in terms of the gradient of one velocity component. Methods and Applications in Analysis (to appear).