Previous |  Up |  Next

Article

Title: Kolmogorov equation and large-time behaviour for fractional Brownian motion driven linear SDE's (English)
Author: Vyoral, Michal
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 50
Issue: 1
Year: 2005
Pages: 63-81
Summary lang: English
.
Category: math
.
Summary: We consider a stochastic process $X_t^x$ which solves an equation \[ {\mathrm d}X_t^x = AX_t^x\mathrm{d}t + \Phi {\mathrm d}B^H_t,\quad X_0^x = x \] where $A$ and $\Phi $ are real matrices and $B^H$ is a fractional Brownian motion with Hurst parameter $H \in (1/2,1)$. The Kolmogorov backward equation for the function $u(t,x) = \mathbb{E} f(X^x_t)$ is derived and exponential convergence of probability distributions of solutions to the limit measure is established. (English)
Keyword: fractional Brownian motion
Keyword: Kolmogorov backwards equation
Keyword: linear stochastic equation
MSC: 60G15
MSC: 60H05
MSC: 60H10
idZBL: Zbl 1099.60040
idMR: MR2117696
DOI: 10.1007/s10492-005-0004-4
.
Date available: 2009-09-22T18:20:32Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134590
.
Reference: [1] E. Alòs, J. A. León, and D. Nualart: Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than $1/2$.Stochastic Processes Appl. 86 (2000), 121–139. MR 1741199
Reference: [2] L. Coutin, Z. Qian: Stochastic differential equations for fractional Brownian motions.C.R. Acad. Sci. Paris 331 (2000), 75–80. MR 1780221, 10.1016/S0764-4442(00)01594-9
Reference: [3] W. Dai, C. C. Heyde: Itô’s formula with respect to fractional Brownian motion and its application.J.  Appl. Math. Stochastic Anal. 9 (1996), 439–448. MR 1429266, 10.1155/S104895339600038X
Reference: [4] L. Decreusefond, A. S. Üstünel: Stochastic analysis of the fractional Brownian motion.Potential Anal. 10 (1999), 177–214. MR 1677455, 10.1023/A:1008634027843
Reference: [5] R. M. Dudley, R. Norvaiša: An Introduction to $p$-Variation and Young Integrals Concentrated Advanced Course.Maphysto, Centre for Mathematical Physics and Stochastics, University of Aarhus, Aarhus, 1999.
Reference: [6] T. E. Duncan, Y. Hu, B. Pasik-Duncan: Stochastic calculus for fractional Brownian motion  I: Theory.SIAM J. Control Optimization 38 (2000), 582–612. MR 1741154, 10.1137/S036301299834171X
Reference: [7] T. E. Duncan, B.  Pasik-Duncan, and B. Maslowski: Fractional Brownian motion and stochastic equations in Hilbert spaces.Stoch. Dyn. 2 (2002), 225–250. MR 1912142, 10.1142/S0219493702000340
Reference: [8] W. Grecksch, V. V. Anh: A parabolic stochastic differential equation with fractional Brownian motion input.Statist. Probab. Lett. 41 (1999), 337–346. MR 1666072, 10.1016/S0167-7152(98)00147-3
Reference: [9] R. A. Horn, C. R. Johnson: Matrix Analysis.Cambridge University Press, Cambridge, 1985. MR 0832183
Reference: [10] H. E. Hurst: Long-term storage capacity in reservoirs.Trans. Amer. Soc. Civil Eng. 116 (1951), 400–410.
Reference: [11] H. E. Hurst: Methods of using long-term storage in reservoirs.Proc. Inst. Civil Engineers, Part  I (1956), 519–590.
Reference: [12] P. Cheridito, H. Kawaguchi, M. Maejima: Fractional Ornstein-Uhlenbeck processes.http://www.math.washington.edu/ ejpecp/EjpVol8/paper3.abs.html.
Reference: [13] A. N. Kolmogoroff: Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum.C. R. (Dokl.) Acad. Sci. URSS (N.S.) 26 (1940), 115–118. MR 0003441
Reference: [14] K. Kubilius: The existence and uniqueness of the solution of an integral equation driven by a $p$-semimartingale of special type.Stochastic Process. Appl. 98 (2002), 289–315. Zbl 1059.60068, MR 1887537, 10.1016/S0304-4149(01)00145-4
Reference: [15] B.  Mandelbrot, J.  Van Ness: Fractional Brownian motions, fractional noises and applications.SIAM Rev. 10 (1968), 422–437. MR 0242239, 10.1137/1010093
Reference: [16] D. Nualart, B. Maslowski: Evolution equations driven by a fractional Brownian motion.J. Funct. Anal (to appear). MR 1994773
Reference: [17] D. Nualart, A. Răşcanu: Differential equations driven by fractional Brownian motion.Collect. Math. 53 (2002), 55–81. MR 1893308
Reference: [18] H. L.  Royden: Real Analysis.Macmillan, New York, 1963. Zbl 0121.05501, MR 0151555
Reference: [19] E. Lutz: Fractional Langevin equation.Phys. Rev.  E 64, 051106 (2001), .
Reference: [20] M.Zähle: Integration with respect to fractal functions and stochastic calculus.  I.Probab. Theory Relat. Fields 111 (1998), 333–374. Zbl 0918.60037, MR 1640795, 10.1007/s004400050171
Reference: [21] M. Zähle: Long range dependence, no arbitrage and the Black-Scholes formula.Stoch. Dyn. 2 (2002), 265–280. Zbl 1016.91053, MR 1912144, 10.1142/S0219493702000406
.

Files

Files Size Format View
AplMat_50-2005-1_4.pdf 401.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo