Previous |  Up |  Next

Article

Title: Nonobtuse tetrahedral partitions that refine locally towards Fichera-like corners (English)
Author: Beilina, Larisa
Author: Korotov, Sergey
Author: Křížek, Michal
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 50
Issue: 6
Year: 2005
Pages: 569-581
Summary lang: English
.
Category: math
.
Summary: Linear tetrahedral finite elements whose dihedral angles are all nonobtuse guarantee the validity of the discrete maximum principle for a wide class of second order elliptic and parabolic problems. In this paper we present an algorithm which generates nonobtuse face-to-face tetrahedral partitions that refine locally towards a given Fichera-like corner of a particular polyhedral domain. (English)
Keyword: partial differential equations
Keyword: finite element method
Keyword: path tetrahedron
Keyword: linear tetrahedral finite element
Keyword: discrete maximum principle
Keyword: reentrant corner
Keyword: Fichera vertex
Keyword: nonlinear heat conduction
MSC: 51M20
MSC: 65N30
MSC: 65N50
idZBL: Zbl 1099.65105
idMR: MR2181027
DOI: 10.1007/s10492-005-0038-7
.
Date available: 2009-09-22T18:24:17Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134624
.
Reference: [1] T.  Apel: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numer. Math.B. G.  Teubner, Leipzig, 1999. MR 1716824
Reference: [2] T.  Apel, F.  Milde: Comparison of several mesh refinement strategies near edges.Commun. Numer. Methods Eng. 12 (1996), 373–381. 10.1002/(SICI)1099-0887(199607)12:7<373::AID-CNM985>3.0.CO;2-8
Reference: [3] T.  Apel, S.  Nicaise: The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges.Math. Methods Appl. Sci. 21 (1998), 519–549. MR 1615426, 10.1002/(SICI)1099-1476(199804)21:6<519::AID-MMA962>3.0.CO;2-R
Reference: [4] O.  Axelsson, V. A.  Barker: Finite Element Solution of Boundary Value Problems. Theory and Computation.Academic Press, Orlando, 1984. MR 0758437
Reference: [5] M.  Bern, P.  Chew, D.  Eppstein, and J.  Ruppert: Dihedral bounds for mesh generation in high dimensions.Proc. of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms (San Francisco, CA, 1995), SIAM, Philadelphia, 1995, pp. 189–196. MR 1321850
Reference: [6] F.  Bornemann, B.  Erdmann, and R.  Kornhuber: Adaptive multilevel methods in three space dimensions.Int. J.  Numer. Methods Eng. 36 (1993), 3187–3203. MR 1236370, 10.1002/nme.1620361808
Reference: [7] E.  Bänsch: Local mesh refinement in  2 and 3  dimensions.IMPACT Comput. Sci. Eng. 3 (1991), 181–191. MR 1141298, 10.1016/0899-8248(91)90006-G
Reference: [8] L.  Collatz: Numerische Behandlung von Differentialgleichungen.Springer-Verlag, Berlin-Göttingen-Heidelberg, 1951. Zbl 0054.05101, MR 0043563
Reference: [9] R.  Cools: Monomial cubature rules since “Stroud”: A compilation.  II.J.  Comput. Appl. Math. 112 (1999), 21–27. Zbl 0954.65021, MR 1728449, 10.1016/S0377-0427(99)00229-0
Reference: [10] R.  Cools, P.  Rabinowitz: Monomial cubature rules since “Stroud”: A compilation.J.  Comput. Appl. Math. 48 (1993), 309–326. MR 1252544, 10.1016/0377-0427(93)90027-9
Reference: [11] H. S.  M.  Coxeter: Trisecting an orthoscheme.Comput. Math. Appl. 17 (1989), 59–71. Zbl 0706.51019, MR 0994189, 10.1016/0898-1221(89)90148-X
Reference: [12] M.  Dauge: Elliptic Boundary Value Problems on Corner Domains. Lect. Notes Math., Vol.  1341.Springer-Verlag, Berlin, 1988. MR 0961439
Reference: [13] M.  Feistauer, J.  Felcman, M.  Rokyta, and Z. Vlášek: Finite-element solution of flow problems with trailing conditions.J.  Comput. Appl. Math. 44 (1992), 131–165. MR 1197680, 10.1016/0377-0427(92)90008-L
Reference: [14] G.  Fichera: Numerical and Quantitative Analysis. Surveys and Reference Works in Mathematics, Vol.  3.Pitman (Advanced Publishing Program), London-San Francisco-Melbourne, 1978. MR 0519677
Reference: [15] H.  Fujii: Some remarks on finite element analysis of time-dependent field problems.Theory Pract. Finite Elem. Struct. Analysis, Univ. Tokyo Press, Tokyo, 1973, pp. 91–106. Zbl 0373.65047
Reference: [16] B. Q.  Guo: The $h$-$p$ version of the finite element method for solving boundary value problems in polyhedral domains.Boundary Value Problems and Integral Equations in Nonsmooth Domains (Luminy, 1993). Lect. Notes Pure Appl. Math., Vol. 167, M.  Costabel, M.  Dauge, and C.  Nicaise (eds.), Marcel Dekker, New York, 1995, pp. 101–120. Zbl 0855.65114, MR 1301344
Reference: [17] P.  Keast: Moderate-degree tetrahedral quadrature formulas.Comput. Methods Appl. Mech. Eng. 55 (1986), 339–348. Zbl 0572.65008, MR 0844909, 10.1016/0045-7825(86)90059-9
Reference: [18] S.  Korotov, M.  Křížek: Acute type refinements of tetrahedral partitions of polyhedral domains.SIAM J.  Numer. Anal. 39 (2001), 724–733. MR 1860255, 10.1137/S003614290037040X
Reference: [19] S.  Korotov, M.  Křížek: Local nonobtuse tetrahedral refinements of a cube.Appl. Math. Lett. 16 (2003), 1101–1104. MR 2013079, 10.1016/S0893-9659(03)90101-7
Reference: [20] I.  Kossaczký: A recursive approach to local mesh refinement in two and three dimensions.J.  Comput. Appl. Math. 55 (1994), 275–288. MR 1329875, 10.1016/0377-0427(94)90034-5
Reference: [21] M.  Křížek, L.  Liu: On the maximum and comparison principles for a steady-state nonlinear heat conduction problem.Z.  Angew. Math. Mech. 83 (2003), 559–563. MR 1994036, 10.1002/zamm.200310054
Reference: [22] M.  Křížek, Qun Lin: On diagonal dominance of stiffness matrices in  3D.East-West J.  Numer. Math. 3 (1995), 59–69. MR 1331484
Reference: [23] M.  Křížek, T.  Strouboulis: How to generate local refinements of unstructured tetrahedral meshes satisfying a regularity ball condition.Numer. Methods Partial Differ. Equations 13 (1997), 201–214. MR 1436615, 10.1002/(SICI)1098-2426(199703)13:2<201::AID-NUM5>3.0.CO;2-T
Reference: [24] J. M.  Maubach: Local bisection refinement for $n$-simplicial grids generated by reflection.SIAM J.  Sci. Comput. 16 (1995), 210–227. Zbl 0816.65090, MR 1311687, 10.1137/0916014
Reference: [25] M.  Picasso: Numerical study of the effectivity index for an anisotropic error indicator based on Zienkiewicz-Zhu error estimator.Commun. Numer. Methods Eng. 19 (2003), 13–23. Zbl 1021.65052, MR 1952014, 10.1002/cnm.546
Reference: [26] M.  Picasso: An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: Application to elliptic and parabolic problems.SIAM J.  Sci. Comput. 24 (2003), 1328–1355. Zbl 1061.65116, MR 1976219, 10.1137/S1064827501398578
Reference: [27] A.  Plaza, G. F.  Carey: Local refinement of simplicial grids based on the skeleton.Appl. Numer. Math. 32 (2000), 195–218. MR 1734507, 10.1016/S0168-9274(99)00022-7
Reference: [28] H.  Schmitz, K.  Volk, and W.  Wendland: Three-dimensional singularities of elastic fields near vertices.Numer. Methods Partial Differ. Equations 9 (1993), 323–337. MR 1216118, 10.1002/num.1690090309
Reference: [29] R. S.  Varga: Matrix iterative analysis.Prentice-Hall, New Jersey, 1962. MR 0158502
.

Files

Files Size Format View
AplMat_50-2005-6_5.pdf 668.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo