Previous |  Up |  Next

Article

Keywords:
scalar and vector optimization; ${\mathcal C}^{1,1}$ functions; Hadamard and Dini derivatives; second-order optimality conditions; Lagrange multipliers.
Summary:
Initially, second-order necessary optimality conditions and sufficient optimality conditions in terms of Hadamard type derivatives for the unconstrained scalar optimization problem $\phi (x)\rightarrow \min $, $x\in \mathbb{R}^m$, are given. These conditions work with arbitrary functions $\phi \:\mathbb{R}^m \rightarrow \overline{\mathbb{R}}$, but they show inconsistency with the classical derivatives. This is a base to pose the question whether the formulated optimality conditions remain true when the “inconsistent” Hadamard derivatives are replaced with the “consistent” Dini derivatives. It is shown that the answer is affirmative if $\phi $ is of class ${\mathcal C}^{1,1}$ (i.e., differentiable with locally Lipschitz derivative). Further, considering ${\mathcal C}^{1,1}$ functions, the discussion is raised to unconstrained vector optimization problems. Using the so called “oriented distance” from a point to a set, we generalize to an arbitrary ordering cone some second-order necessary conditions and sufficient conditions given by Liu, Neittaanmäki, Křížek for a polyhedral cone. Furthermore, we show that the conditions obtained are sufficient not only for efficiency but also for strict efficiency.
References:
[1] B.  Aghezzaf: Second-order necessary conditions of the Kuhn-Tucker type in multiobjective programming problems. Control Cybern. 28 (1999), 213–224. MR 1752558 | Zbl 0946.90075
[2] V.  M.  Alekseev, V.  M.  Tikhomirov, S.  V.  Fomin: Optimal Control. Consultants Bureau, New York, 1987 (Russian original: Optimal’noe upravlenie. Publ. Nauka, Moscow, 1979). MR 0924574
[3] T.  Amahroq, A.  Taa: On Lagrange-Kuhn-Tucker multipliers for multiobjective optimization problems. Optimization 41 (1997), 159–172. DOI 10.1080/02331939708844332 | MR 1459915
[4] A.  Auslender: Stability in mathematical programming with nondifferentiable data. SIAM J.  Control Optimization 22 (1984), 239–254. DOI 10.1137/0322017 | MR 0732426 | Zbl 0538.49020
[5] E.  Bednarczuk, W.  Song: PC points and their application to vector optimization. PLISKA, Stud. Math. Bulg. 12 (1998), 21–30. MR 1686508
[6] S.  Bolintinéanu, M.  El  Maghri: Second-order efficiency conditions and sensitivity of efficient points. J.  Optimization Theory Appl. 98 (1998), 569–592. DOI 10.1023/A:1022619928631 | MR 1640141
[7] M.  Ciligot-Travain: On Lagrange-Kuhn-Tucker multipliers for Pareto optimization problems. Numer. Funct. Anal. Optimization 15 (1994), 689–693. DOI 10.1080/01630569408816587 | MR 1281568
[8] G. P.  Crespi, I.  Ginchev, M.  Rocca: Minty variational inequality, efficiency and proper efficiency. Vietnam J.  Math. 32 (2004), 95–107. MR 2052725
[9] V.  F.  Demyanov, A.  M.  Rubinov: Constructive Nonsmooth Analysis. Peter Lang, Frankfurt am Main, 1995. MR 1325923
[10] I.  Ginchev:: Higher order optimality conditions in nonsmooth optimization. Optimization 51 (2002), 47–72. DOI 10.1080/02331930211986 | MR 1926300 | Zbl 1011.49014
[11] I.  Ginchev, A.  Guerraggio, M.  Rocca: Equivalence on $(n+1)$-th order Peano and usual derivatives for $n$-convex functions. Real Anal. Exch. 25 (2000), 513–520. MR 1779334
[12] I.  Ginchev, A.  Guerraggio, M.  Rocca: On second-order conditions in vector optimization. Preprint 2002/32, Universitá dell’Insubria, Facoltà di Economia, Varese 2002, http://eco.uninsubria.it/dipeco/Quaderni/files/QF2002_32.pdf
[13] I.  Ginchev, A.  Guerraggio, M.  Rocca: First-order conditions for $C^{0,1}$  constrained vector optimization. In: Variational Analysis and Applications, F. Giannessi, A.  Maugeri (eds.), Springer-Verlag, New York, 2005, pp. 427–450. MR 2159985
[14] I.  Ginchev, A.  Hoffmann: Approximation of set-valued functions by single-valued one. Discuss. Math., Differ. Incl., Control Optim. 22 (2002), 33–66. DOI 10.7151/dmdico.1031 | MR 1961115
[15] A.  Guerraggio, D. T.  Luc: Optimality conditions for $C^{1,1}$ vector optimization problems. J.  Optimization Theory Appl. 109 (2001), 615–629. DOI 10.1023/A:1017519922669 | MR 1835076
[16] J.-B.  Hiriart-Urruty, J.-J.  Strodiot, V.  Hien Nguen: Generalized Hessian matrix and second order optimality conditions for problems with $C^{1,1}$  data. Appl. Math. Optimization 11 (1984), 43–56. DOI 10.1007/BF01442169 | MR 0726975
[17] J.-B.  Hiriart-Urruty: New concepts in nondifferentiable programming. Analyse non convexe, Bull. Soc. Math. France 60 (1979), 57–85. MR 0562256 | Zbl 0469.90071
[18] J.-B.  Hiriart-Urruty: Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4 (1979), 79–97. DOI 10.1287/moor.4.1.79 | MR 0543611 | Zbl 0409.90086
[19] D.  Klatte, K.  Tammer: On second order sufficient optimality conditions for $C^{1,1}$-optimization problems. Optimization 19 (1988), 169–179. DOI 10.1080/02331938808843333 | MR 0948388
[20] L.  Liu: The second-order conditions of nondominated solutions for $C^{1,1}$  generalized multiobjective mathematical programming. Syst. Sci. Math. Sci. 4 (1991), 128–138. MR 1119288
[21] L.  Liu, M.  Křížek: The second order optimality conditions for nonlinear mathematical programming with $C^{1,1}$  data. Appl. Math. 42 (1997), 311–320. DOI 10.1023/A:1023068513188 | MR 1453935
[22] L.  Liu, P.  Neittaanmäki, M.  Křížek: Second-order optimality conditions for nondominated solutions of multiobjective programming with $C^{1,1}$  data. Appl. Math. 45 (2000), 381–397. DOI 10.1023/A:1022272728208 | MR 1777017
[23] D. T.  Luc: Theory of Vector Optimization. Springer Verlag, Berlin, 1988. Zbl 0654.90082
[24] D. T.  Luc: Taylor’s formula for $C^{k,1}$  functions. SIAM J.  Optim. 5 (1995), 659–669. DOI 10.1137/0805032 | MR 1344674
[25] E.  Miglierina: Characterization of solutions of multiobjective optimization problems. Rendiconti Circ. Mat. Palermo 50 (2001), 153–164. DOI 10.1007/BF02843924 | MR 1825676
[26] E.  Miglierina, E.  Molho: Scalarization and stability in vector optimization. J.  Optimization Theory Appl. 114 (2002), 657–670. DOI 10.1023/A:1016031214488 | MR 1921171
[27] G.  Peano: Sulla formola di Taylor. Atti Accad. Sci. Torino 27 (1891), 40-46.
[28] R. T.  Rockafellar: Convex Analysis. Princeton University Press, Princeton, 1970. MR 0274683 | Zbl 0193.18401
[29] X. Yang: Second-order conditions in $C^{1,1}$ optimization with applications. Numer. Funct. Anal. Optimization 14 (1993), 621–632. DOI 10.1080/01630569308816543 | MR 1248132
[30] X. Q.  Yang: Generalized second-order derivatives and optimality conditions. Nonlinear Anal. 23 (1994), 767–784. DOI 10.1016/0362-546X(94)90218-6 | MR 1298568 | Zbl 0816.49008
[31] X. Q.  Yang, V.  Jeyakumar: Generalized second-order directional derivatives and optimization with $C^{1,1}$  functions. Optimization 26 (1992), 165–185. DOI 10.1080/02331939208843851 | MR 1236606
[32] A.  Zaffaroni: Degrees of efficiency and degrees of minimality. SIAM J. Control Optimization 42 (2003), 1071–1086. DOI 10.1137/S0363012902411532 | MR 2002149 | Zbl 1046.90084
[33] C.  Zalinescu: On two notions of proper efficiency. In: Optimization in Mathematical Physics, Pap. 11th Conf. Methods Techniques Math. Phys., Oberwolfach, Brokowski and Martensen (eds.), Peter Lang, Frankfurt am Main, 1987. MR 1036535 | Zbl 0618.90089
Partner of
EuDML logo