[1] J. Aczél, Z.  Daróczy: 
Charakterisierung der Entropien positiver Ordnung und der Shannonschen Entropie. Acta Math. Acad. Sci. Hungar. 14 (1963), 95–121. (German) 
DOI 10.1007/BF01901932 | 
MR 0191738[2] J. Aczél, Z.  Daróczy: 
On Measures of Information and Their Characterizations. Academic Press, New York-San Francisco-London, 1975. 
MR 0689178[3] M. Behara, P.  Nath: 
Additive and non-additive entropies of finite measurable partitions. Probab. Inform. Theory  II. Lect. Notes Math. Vol.  296, Springer-Verlag, Berlin-Heidelberg-New York, 1973, pp. 102–138. 
MR 0379019[6] Z. Daróczy, A.  Jarai: 
On the measurable solutions of functional equation arising in information theory. Acta Math. Acad. Sci. Hungar. 34 (1979), 105–116. 
DOI 10.1007/BF01902599 | 
MR 0546725[7] Z. Daróczy, L.  Losonczi: 
Über die Erweiterung der auf einer Punktmenge additiven Funktionen. Publ. Math. 14 (1967), 239–245. (German) 
MR 0240492[8] K. K. Gulati: 
Some functional equations connected with entropy. Bull. Calcutta Math. Soc. 80 (1988), 96–100. 
MR 0956797 | 
Zbl 0654.39004[9] J. Havrda, F.  Charvát: 
Quantification method of classification process. Concept of structural $\alpha $-entropy. Kybernetika 3 (1967), 30–35. 
MR 0209067[11] Pl. Kannappan: 
On a generalization of some measures in information theory. Glas. Mat., III. Sér. 9 (1974), 81–93. 
MR 0363671 | 
Zbl 0287.39006[14] L. Losonczi, Gy.  Maksa: 
On some functional equations of the information theory. Acta Math. Acad. Sci. Hungar. 39 (1982), 73–82. 
DOI 10.1007/BF01895217 | 
MR 0653676[17] C. E. Shannon: 
A mathematical theory of communication. Bell Syst. Tech. Jour. 27 (1948), 378–423, 623–656. 
MR 0026286 | 
Zbl 1154.94303[18] I. Vajda: 
Bounds on the minimal error probability on checking a finite or countable number of hypotheses. Probl. Inf. Transm. 4 (1968), 9–19. 
MR 0267685