[1] L. Alvarez, F. Guichard, P.-L. Lions, J.-M. Morel: Axioms and fundamental equations of image processing. Arch. Ration. Mech. Anal. 123 (1993), 200–257.
[2] S. Angenent, M. E. Gurtin: 
Multiphase thermomechanics with an interfacial structure. 2. Evolution of an isothermal interface. Arch. Ration. Mech. Anal. 108 (1989), 323–391. 
DOI 10.1007/BF01041068[3] G.  Barles, P. E. Souganidis: Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal. 4 (1991), 271–283.
[4] M. Beneš, K. Mikula: Simulations of anisotropic motion by mean curvature—comparison of phase field and sharp interface approaches. Acta Math. Univ. Comen. 67 (1998), 17–42.
[5] S. L. Chan, E. O. Purisima: 
A new tetrahedral tesselation scheme for isosurface generation. Computers and Graphics 22 (1998), 83–90. 
DOI 10.1016/S0097-8493(97)00085-X[6] V. Caselles, R. Kimmel, G. Sapiro: 
Geodesic active contours. International Journal of Computer Vision 22 (1997), 61–79. 
DOI 10.1023/A:1007979827043[7] Y.-G. Chen, Y. Giga, S. Goto: 
Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation. J.  Differ. Geom. 33 (1991), 749–786. 
DOI 10.4310/jdg/1214446564 | 
MR 1100211[8] S. Corsaro, K. Mikula, A. Sarti, F. Sgallari: 
Semi-implicit co-volume method in 3D  image segmentation. SIAM J.  Sci. Comput. 28 (2006), 2248–2265. 
DOI 10.1137/060651203 | 
MR 2272260[10] K. Deckelnick, G. Dziuk: 
Error estimates for a semi-implicit fully discrete finite element scheme for the mean curvature flow of graphs. Interfaces Free Bound. 2 (2000), 341–359. 
MR 1789171[11] K. Deckelnick, G. Dziuk: 
Numerical approximations of mean curvature flow of graphs and level sets. In: Mathematical Aspects of Evolving Interfaces, L.  Ambrosio, K.  Deckelnick, G.  Dziuk, M.  Mimura, V. A.  Solonnikov, H. M.  Soner (eds.), Springer, Berlin-Heidelberg-New York, 2003, pp. 53–87. 
MR 2011033[15] A. Handlovičová, K. Mikula, A. Sarti: 
Numerical solution of parabolic equations related to level set formulation of mean curvature flow. Comput. Vis. Sci. 1 (1998), 179–182. 
DOI 10.1007/s007910050016[16] A. Handlovičová, K. Mikula, F. Sgallari: 
Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution. Numer. Math. 93 (2003), 675–695. 
DOI 10.1007/s002110100374 | 
MR 1961884[17] A. Handlovičová, K. Mikula, F. Sgallari: 
Variational numerical methods for solving nonlinear diffusion equations arising in image processing. J.  Visual Communication and Image Representation 13 (2002), 217–237. 
DOI 10.1006/jvci.2001.0479[19] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, A. Yezzi: 
Conformal curvature flows: from phase transitions to active vision. Arch. Ration. Mech. Anal. 134 (1996), 275–301. 
DOI 10.1007/BF00379537 | 
MR 1412430[20] R. Le Veque: 
Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 2002. 
MR 1925043[21] K. Mikula, J. Kačur: 
Evolution of convex plane curves describing anisotropic motions of phase interfaces. SIAM J. Sci. Comput. 17 (1996), 1302–1327. 
DOI 10.1137/S1064827594261905 | 
MR 1413703[22] K. Mikula, N. Ramarosy: 
Semi-implicit finite volume scheme for solving nonlinear diffusion equations in image processing. Numer. Math. 89 (2001), 561–590. 
DOI 10.1007/PL00005479 | 
MR 1864431[23] K. Mikula, A. Sarti, F. Sgallari: 
Co-volume method for Riemannian mean curvature flow in subjective surfaces multiscale segmentation. Comput. Vis. Sci. 9 (2006), 23–31. 
DOI 10.1007/s00791-006-0014-0 | 
MR 2214835[24] K. Mikula, A. Sarti, F. Sgallari: Semi-implicit co-volume level set method in medical image segmentation. In: Handbook of Biomedical Image Analysis: Segmentation and Registration Models, J. Suri et al. (eds.), Springer, New York, 2005, pp. 583–626.
[25] K. Mikula, D. Ševčovič: 
Evolution of plane curves driven by a nonlinear function of curvature and anisotropy. SIAM J.  Appl. Math. 61 (2001), 1473–1501. 
DOI 10.1137/S0036139999359288 | 
MR 1824511[26] K. Mikula, D. Ševčovič: 
Computational and qualitative aspects of evolution of curves driven by curvature and external force. Computing and Visualization in Science 6 (2004), 211–225. 
DOI 10.1007/s00791-004-0131-6 | 
MR 2071441[27] R. H. Nochetto, M. Paolini, C. Verdi: 
Sharp error analysis for curvature dependent evolving fronts. Math. Models Methods Appl. Sci. 3 (1993), 711–723. 
DOI 10.1142/S0218202593000369 | 
MR 1245632[29] S. Osher, R. Fedkiw: 
Level Set Methods and Dynamic Implicit Surfaces. Springer, New York, 2003. 
MR 1939127[30] S. Osher, J. Sethian: 
Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988), 12–49. 
MR 0965860[31] A. Sarti, R. Malladi, J.A. Sethian: 
Subjective surfaces: A method for completing missing boundaries. Proc. Natl. Acad. Sci. USA 12 (2000), 6258–6263. 
MR 1760935[32] J. A. Sethian: 
Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science. Cambridge University Press, New York, 1999. 
MR 1700751