Previous |  Up |  Next

Article

Title: A new indirect adaptive pole placer for possibly non-minimum phase MIMO linear systems (English)
Author: Arvanitis, K. G.
Author: Kalogeropoulos, G.
Author: Kookos, I. K.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 36
Issue: 5
Year: 2000
Pages: [497]-529
Summary lang: English
.
Category: math
.
Summary: The use of generalized sampled-data hold functions, in order to synthesize adaptive pole placers for linear multiple-input, multiple-output systems with unknown parameters, is investigated in this paper, for the first time. Such a control scheme relies on a periodically varying controller, which suitably modulates the sampled outputs of the controlled plant. The proposed control strategy allows us to assign the poles of the sampled closed-loop system arbitrarily in desired locations, and does not make assumptions on the plant other than controllability and observability of the continuous and the sampled system, and the knowledge of a set of structural indices, namely the locally minimum controllability indices of the continuous-time plant. The indirect adaptive control scheme presented here, estimates the unknown plant parameters (and hence the parameters of the desired modulating matrix function) on line, from sequential data of the inputs and the outputs of the plant, which are recursively updated within the time limit imposed by a fundamental sampling period $T_0$. The controller determination is based on the transformation of the discrete analogue of the system under control to a phase-variable canonical form, prior to the application of the control design procedure. The solution of the problem can, then, be obtained by a quite simple utilization of the concept of state similarity transformation, whereas known indirect adaptive pole placement techniques require the solution of matrix polynomial Diophantine equations. Moreover, in many cases, the solution of the Diophantine equation for a desired set of closed-loop eigenvalues might yield an unstable controller, and the overall adaptive pole placement scheme is then unstable with unstable compensators because their outputs are unbounded. The proposed strategy avoids these problems, since here gain controllers are essentially needed to be designed. Moreover, persistency of excitation and, therefore, parameter convergence, of the continuous-time plant is provided without making assumptions either on the existence of specific convex sets in which the estimated parameters belong or on the coprimeness of the polynomials describing the ARMA model, or finally on the richness of the reference signals, as compared to known adaptive pole placement schemes. (English)
Keyword: generalized sampled-data
Keyword: pole placement problem
Keyword: adaptive control
MSC: 93B55
MSC: 93C40
MSC: 93C57
idZBL: Zbl 1249.93084
idMR: MR1882791
.
Date available: 2009-09-24T19:34:48Z
Last updated: 2015-03-27
Stable URL: http://hdl.handle.net/10338.dmlcz/135368
.
Reference: [1] Abramovitch D. Y., Franklin G. F.: On the stability of adaptive pole placement controllers with a saturating actuator.IEEE Trans. Automat. Control AC-35 (1990), 303–306 Zbl 0707.93030, MR 1044025, 10.1109/9.50341
Reference: [2] Al-Rahmani H. M., Franklin G. F.: Linear periodic systems: Eigenvalue assignment using discrete periodic feedback.IEEE Trans. Automat. Control 34 (1989), 99–103 Zbl 0657.93024, MR 0970938, 10.1109/9.8657
Reference: [3] Anderson B. D. O., Johnstone R. M.: Global adaptive pole positioning.IEEE Trans. Automat. Control AC-30 (1985), 11–22 Zbl 0553.93032, MR 0777073, 10.1109/TAC.1985.1103799
Reference: [4] Araki M., Hagiwara T.: Pole assignment by multirate sampled data output feedback.Internat. J. Control 44 (1986), 1661–1673 Zbl 0613.93040, 10.1080/00207178608933692
Reference: [5] Arvanitis K. G.: An indirect adaptive pole placer for MIMO systems, based on multirate sampling of the plant output.IMA J. Math. Control Inform. 12 (1995), 363–394 Zbl 0848.93033, MR 1363319, 10.1093/imamci/12.4.363
Reference: [6] Arvanitis K. G.: An indirect model reference adaptive controller based on the multirate sampling of the plant output.Internat. J. Adaptive Control Signal Process. 10 (1996), 673–705 Zbl 0876.93056, MR 1423712, 10.1002/(SICI)1099-1115(199611)10:6<673::AID-ACS405>3.0.CO;2-M
Reference: [7] Arvanitis K. G.: An indirect model reference adaptive control algorithm based on multidetected–output controllers.Appl. Math. Comput. Sci. 6 (1996), 667–706 Zbl 0867.93048, MR 1438134
Reference: [8] Arvanitis K. G.: Adaptive LQ regulation by multirate–output controllers.Found. Computing Dec. Sciences 21 (1996), 183–213 MR 1440295
Reference: [9] Arvanitis K. G.: An adaptive decoupling compensator for linear systems based on periodic multirate–input controllers.J. Math. Syst. Est. Control 8 (1998), 373–376 Zbl 1126.93358, MR 1650078
Reference: [10] Arvanitis K. G., Kalogeropoulos G.: A new periodic multirate model reference adaptive controller for possibly nonstably invertible plants.Kybernetika 33 (1997), 203–220 MR 1454279
Reference: [11] Arvanitis K. G., Paraskevopoulos P. N.: Exact model matching of linear systems using multirate digital controllers: In: Proc.2nd European Control Conference, Groningen 1993, vol. 3, pp. 1648–1652
Reference: [12] Arvanitis K. G., Paraskevopoulos P. N.: Discrete model reference adaptive control of continuous–time linear multi–input, multi–output systems using multirate sampled–data controllers.J. Optim. Theory Appl. 84 (1995), 471–493 MR 1326071, 10.1007/BF02191981
Reference: [13] Åstrom K. J., Wittenmark B.: Analysis of a self–tuning regulator for non–minimum phase systems.In: Proc. IFAC Stochast. Control Symposium, Budapest 1974, pp. 165–173
Reference: [14] Åstrom K. J., Wittenmark B.: Self–tuning controllers based on pole–zero placement.Proc. IEE–D 127 (1980), 120–130
Reference: [15] Chammas A. B., Leondes C. T.: On the design of linear time invariant systems by periodic output feedback.Parts I and II. Internat. J. Control 27 (1978), 885–903 Zbl 0388.93022, MR 0504221, 10.1080/00207177808922419
Reference: [16] Das M., Cristi R.: Robustness of an adaptive pole placement algorithm in the presence of bounded disturbances and slow time variation of parameters.IEEE Trans. Automat. Control AC-35 (1990), 752–756 Zbl 0800.93452, 10.1109/9.53562
Reference: [17] Egardt B.: Stability analysis of discrete–time adaptive control scheme.IEEE Trans. Automomat. Control AC-25 (1980), 710–716 MR 0583447, 10.1109/TAC.1980.1102416
Reference: [18] Eising R., Hautus M. L. J.: Realizations Algorithms for Systems over a Principal Ideal Domain.Memorandum COSOR 78–25, Eindhoven University of Technology, Dept. of Mathematics, Eindhoven 1978
Reference: [19] Elliott H.: Direct adaptive pole placement with application to nonminimum phase systems.IEEE Trans. Automat. Control AC-27 (1982), 720–722 Zbl 0493.93033, 10.1109/TAC.1982.1102963
Reference: [20] Elliott H., Cristi R., Das M.: Global stability adaptive pole placement algorithms.IEEE Trans. Automat. Control AC-30 (1985), 348–356 MR 0786712, 10.1109/TAC.1985.1103954
Reference: [21] Elliott H., Wolovich W. A., Das M.: Arbitrary adaptive pole placement for linear multivariable systems.IEEE Trans. Automat. Control AC-29 (1984), 221–229 Zbl 0534.93026, 10.1109/TAC.1984.1103491
Reference: [22] Giri F., Dion J. M., Dugard L., M’Saad M.: Robust pole placement direct adaptive control.IEEE Trans. Automat. Control AC-34 (1989), 356–359 Zbl 0666.93084, MR 0980372, 10.1109/9.16434
Reference: [23] Giri F., M’Saad M., Dugard L., Dion J. M.: Robust pole placement indirect adaptive controller.Internat. J. Adaptive Control Signal Process. 2 (1988), 33–47 MR 0941862, 10.1002/acs.4480020103
Reference: [24] Goodwin G. C., Sin K. S.: Adaptive Filtering, Prediction and Control.Prentice-Hall, Englewood Cliffs, N. J. 1984 Zbl 0653.93001
Reference: [25] Greshak J. P., Vergese G. C.: Periodically varying compensation of time–invariant systems.Systems Control Lett. 2 (1982), 88–93 MR 0671861, 10.1016/S0167-6911(82)80016-9
Reference: [26] Guidorzi R.: Canonical structures in the identification of multivariable systems.Automatica 11 (1975), 361–374 Zbl 0309.93012, MR 0444226, 10.1016/0005-1098(75)90085-0
Reference: [27] Hagiwara T., Araki M.: Design of a stable state feedback controller based on the multirate sampling of the plant output.IEEE Trans. Automat. Control AC-33 (1988), 812–819 Zbl 0648.93043, MR 0953875, 10.1109/9.1309
Reference: [28] Ho B. L., Kalman R. E.: Effective construction of linear state variable models from input/output functions.In: Proc. 3rd Allerton Conference, pp. 449–459; Regelungstechnik 14 (1966), 545–548 Zbl 0145.12701, MR 0245360
Reference: [29] Kabamba P. T.: Control of linear systems using generalized sampled–data hold functions.IEEE Trans. Automat. Control AC-32 (1987), 772–783 Zbl 0627.93049, MR 0902487, 10.1109/TAC.1987.1104711
Reference: [30] Kabamba P. T., Yang C.: Simultaneous controller design for linear time–invariant systems.IEEE Trans. Automat. Control 36 (1991), 106–111 Zbl 0745.93046, MR 1084253, 10.1109/9.62275
Reference: [31] Kalman R. E., Ho Y. C., Narendra K. S.: Controllability of linear dynamical systems.Contrib. Diff. Equations 1 (1972), 189-213, 1962 MR 0155070
Reference: [32] Khargonekar P. P., Poola K., Tannenbaum A.: Robust control of linear time–invariant plants using periodic compensation.IEEE Trans. Automat. Control AC-30 (1985), 1088–1096 MR 0810310, 10.1109/TAC.1985.1103841
Reference: [33] Kinnaert M., Blondel V.: Discrete–time pole placement with stable controller.Automatica 28 (1992), 935–943 Zbl 0766.93022, MR 1179696, 10.1016/0005-1098(92)90146-7
Reference: [34] Kim J.-H., Hong Y.-C., Choi K.-K.: Direct model reference adaptive pole placement control with exponential weighting properties.IEEE Trans. Automat. Control AC-36 (1991), 1073–1077 Zbl 0754.93028, MR 1122486, 10.1109/9.83541
Reference: [35] Lozano-Leal R.: Robust adaptive regulation without persistent excitation.IEEE Trans. Automat. Control AC-34 (1989), 1260–1267 Zbl 0689.93038, MR 1029376, 10.1109/9.40771
Reference: [36] Lozano-Leal R., Goodwin G. C.: A globally convergent adaptive pole placement algorithm without a persistency of excitation requirement.IEEE Trans. Automat. Control AC-30 (1985), 795-798 MR 0794220, 10.1109/TAC.1985.1104036
Reference: [37] McElveen J. K., Lee K. R., Bennett J. E.: Identification of multivariable linear systems from input/output measurements.IEEE Trans. Ind. Electr. 39 (1992), 189–193 10.1109/41.141619
Reference: [38] Mita T., Pang B. C., Liu K. Z.: Design of optimal strongly stable digital control systems and application to output feedback control of mechanical systems.Internat. J. Control 45 (1987), 2071–2082 Zbl 0616.93051, MR 0891798, 10.1080/00207178708933868
Reference: [39] Mo L., Bayoumi M. M.: A novel approach to the explicit pole assignment self–tuning controller design.IEEE Trans. Automat. Control AC-34 (1989), 359–363 Zbl 0666.93083, MR 0980373, 10.1109/9.16435
Reference: [40] Paraskevopoulos P. N., Arvanitis K. G.: Exact model matching of linear systems using generalized sampled–data hold functions.Automatica 30 (1994), 503–506 Zbl 0800.93329, MR 1268953, 10.1016/0005-1098(94)90127-9
Reference: [41] Sastry S., Bodson M.: Adaptive Control: Stability, Convergence and Robustness.Prentice–Hall, Englewood Cliffs, N. J. 1989 Zbl 0721.93046
Reference: [42] Silverman L. M.: Realization of linear dynamical systems.IEEE Trans. Automat. Control AC-16 (1971), 554–567 MR 0307749, 10.1109/TAC.1971.1099821
Reference: [43] Wellstead P. E., Edmunds J. M., Prager D., Zanker P.: Self–tuning pole/zero assignment regulators.Internat. J. Control 30 (1979), 1–26 Zbl 0422.93096, 10.1080/00207177908922754
Reference: [44] Youla D. C., Bongiorno J. J., Jr., Lu C. N.: Single–loop feedback stabilization of linear multivariable dynamical systems.Automatica 10 (1974), 159–173 MR 0490293, 10.1016/0005-1098(74)90021-1
.

Files

Files Size Format View
Kybernetika_36-2000-5_1.pdf 4.968Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo