[2] Csörgő M., Horváth L.: 
Weighted Approximations in Probability and Statistics. Wiley, New York 1993 
MR 1215046 
[3] Csörgő M., Horváth L.: 
Limit Theorems in Change-point Analysis. Wiley, New York 1997 
MR 2743035 
[5] Huber P. J.: 
Robust Statistics. Wiley, New York 1981 
MR 0606374 
[7] Hušková M.: 
Limit theorems for $M$-processes via rank statistics processes. In: Advances in Combinatorial Methods with Applications to Probability and Statistics (N. Balakrishnan, ed.), Birkhäuser, Boston 1997, pp. 521–534 
MR 1456754 | 
Zbl 0933.62040 
[8] Hušková M.: 
$L_1$-test procedures for detection of change. In: $L_1$-Statistical Procedures and Related Topics (IMS Lecture Notes – Monograph Ser. 31), Institute of Mathematical Statistics, Beachwood 1997, pp. 56–70 
Zbl 0935.62052 
[9] Hušková M.: 
Some invariant test procedures for detection of structural changes. Kybernetika 36 (2000), 401–414 
MR 1830646 
[11] Jurečková J., Sen P. K.: 
On adaptive scale-equivariant $M$-estimators in linear models. Statist. Decisions, Suplement Issue 1 (1984), 31–41 
MR 0785200 | 
Zbl 0586.62042 
[12] Jurečková J., Sen P. K.: 
Regression rank scores scale statistics and studentization in linear models. In: Asymptotic Statistics (M. Hušková and P. Mandl, eds.), Physica–Verlag, Heidelberg, 1994, pp. 111–122 
MR 1311932 
[15] Víšek T.: Detection of Changes in Econometric Models. Ph.D. Dissertation. Charles University, Prague 1999